Exploring Programming Language Architecture in Perl
Bill Hails

Sun Mar 14 10:43:13 2010 UST

(© 2010 by Bill Hails. Some rights reserved.
Author may be contacted at me@billhails.net.
Typeset by the author in XML and translated into IXTEX2e by custom software.
Cover image written in POVRay by the author.

Description: an online book using the Perl programming language to explore various
aspects of programming language architecture.

Keywords: perl, scheme, interpreter, pscheme

ISBN: 978-1-4452-2592-0

Contents

e

Implementing a Scheme-Like Interpreter

Introduction

1.1 Why Perl? o
1.2 Why Scheme?
1.3 References L e
1.4 Typography o
1.5 A Note on the Interpreter Versions e
An Introduction to PScheme

2.1 PScheme Syntax
2.2 Simple Expressions Lo e
2.3 Conditionals e
2.4 Global Variables e
2.5 Functions e e e e
2.6 Local Variables e e

Interpreter Version 0.0.0

3.1 The Read-Eval-Print Loop e
3.2 The Environment L L
3.3 The Reader
3.4 PScheme Expressionso
3.5 Evaluation e
3.5.1 Evaluation of Literals
3.5.2 Evaluation of Symbolso
3.5.3 Evaluation of Lists
3.6 Primitive Operations e
3.7 Special Forms L
3.8 0utput
3.9 Summary e
3.10 Tests . . . o e e e
3.1 Listings o oL e e
3111 PScm.pm . . . L.
3.11.2 PSCm/ENV.PIo e e
3.11.3 PScm/Read.pm i e e e e
3.11.4 PScm/TOREI.PI . .« o v v v v e i e e e e e e e e
3.11.5 PScm/Primitive.pm e

iii

iv CONTENTS
3.11.6 PScm/SpecialForm.pmt e e 42

3.11.7 PScm/EXPr.Pm o e e e e e e e e e 43

3118 t/PSCIM.t o e e 46

3.11.9 t/1ib/PScm/TeSt.pm o o it e 47
3.11.10t/interactive e e e e e e 48

4 Implementing let 49
4.1 The Environment L Lo e 49
4.1.1 A Stack-based Environment 49

4.1.2 A Linked List Environment 50

4.2 Global Environments have a Problem 52
4.3 Environment Passing Lo e 53
4.4 let Itself e 55
4.5 SUMMATY .« . o v v ot e et e e e e e e e 56
4.6 Tests e o6
4.7 Listings L o7
471 t/PScmLet.t e 57

5 Implementing lambda 59
5.1 lambda e e e e 61
5.2 Evaluating a Closure e 66
5.3 Printing a Closure 68
D4 SUummary . .o oL e e e e e e 69
5.5 Tests e e e e 69
5.6 Listings L 70
5.6.1 PScm/CLlOSUTe.PIM v v vttt e e e 70

5.6.2 t/PScm Lambda.t e e e 72

6 Recursion and letrec 73
6.1 1etreC e e 74
6.1.1 Assignment e 75

6.1.2 PSCM::LetRecitself 76

6.2 Summary e 78
6.3 Tests e e 79
6.4 Listings e 80
6.4.1 t/PScm_Letrec.t o o i i e e e e e 80

7 Another Variation on let 81
7.1 Sequential Binding 81
T2 Let* . ..o 82
7.3 SUMMATY o vttt s e e e e e e 83
T4 Tests . . . o e 84
7.5 Listings o .. 85

7.5.1 t/PScm_LetStar.t e 85

CONTENTS

8 List Processing
8.1 quoteo
8.2 LISt
83 carand cdr e e e
8.4 COMS e
8.4.1 Dot Notation e
8.5 Implementation
8.5.1 Changes to Expressions e
8.5.2 Changes to Primitives and Special Forms
8.5.3 Changes to Closures o i i it e
8.5.4 Changes to the Environmento
8.5.5 Changes tothe Reader
8.6 Summary e e
8.7 Tests . . . o e e e
8.8 Listings e
8.8.1 t/PScm List.t e
8.8.2 t/PScmDot.t e e e e e

9 Macros
9.1 macro e
9.2 Evaluating Macros e e e
9.2.1 Tryingitout e
9.2.2 AnImprovement
9.2.3 Onme Last Addition e
0.3 SUMMATY e e e
9.4 Tests e
9.5 Listings e
9.5.1 t/PScmMacro.t e e e e e
9.5.2 t/PScmEval.t e e e

10 Side Effects

10.1 The Beauty of Functional Languages,
10.2 Variable Assignment L
10.3 SeqUenCes o e e e
10.4 Summary e e e
10.5 Tests . . . o o o L
10.6 Listings o . oo e e

10.6.1 t/PScm_SideEffects.t o o

11 define
11.1 Environment Changes e
11.2 The define Special Form
11.3 Persistant Environments
11.4 Tests . . . o o o e e e
11.5 Listings o o o o e e e
11.5.1 t/PScmDefine.t e e

87
87
88
88
89
89
91
92
96
99
99
101
103
104
105
105
106

107
108
108
109
112
117
118
119
120
120
122

123
123
124
126
127
128
129
129

vi CONTENTS
12 Classes and Objects 135
12.1 Features of this implementation L o 135
12.1.1 Inheritance e 136
12.1.2 Class Variables and Methods L o . 138
12.1.3 super Calls 138
12.1.4 Feature Summary e e e e 139

12.2 Implementation L 139
12.2.1 Class Creation with make-class it 140
12.2.2 Object Creation e e 141
12.2.3 init Method Invocationo 145
12.2.4 General Method Invocation o 148
12.2.5 super Method Invocation L o 148
12.2.6 Wiring it up o L e 149

12.3 Summary and Variations 150
12,4 Tests . . . o o o e e e e 151
12.5 Listings oL 153
12.5.1 PScm/ClasS.PIl . . .« o v v v v e e e e e e e e e e e e e e 153
12.5.2 t/PScm 00.T o e e e 155

13 Continuations 159
13.1 Tail Recursion and Tail Call Optimization 161
13.2 Continuation Passing Style L Lo 164
13.3 Example cps Transformations 172
13.4 The Trampoline e e 176
13.5 Using CPS o o ot e e 179
13.6 Implementation L oL 186
13.6.1 Our Trampoline Implementation, 186
13.6.2 cPs let and lambdao 188
13.6.3 CPS letrec L 202
13.6.4 CPS let* e 204
13.6.5 cPs List Processing 206
13.6.6 cpPSmacro and unquote 208
13.6.7 cPs Sequences and Assignment L. Lo 211
13.6.8 CPSdefine e e 212
13.6.9 CPS OOP o e 213

13.7 cps Without Closures 218
13.8 cPSFun 220
13.8.1 Anerror Handler 220
13.8.2 yield e e 222

13.9 Summary e 224
13.10Listings e e 225
13.10.1PScm/Continuation.pm 225
13.10.2t/PScm_CallCC.t o v v ot i e e e e e e 226
13.10.3t/CPS_EXTOr.t . . . o v v i o et e e e e e e e e e e e 227

13.10.4t/CPS_Yield.t o i e e e e 228

CONTENTS

14 Threads
14.1 Variations
142 Tests
14.3 Listings
14.3.1 t/CPS_Spawn.t

15 Better Error Handling

15.1 The Built in error Primitive oo
15.2 Using the error Builtin for Internal Errors L.

153 Tests
15.4 Listings

15.4.1 t/CPS_BUuiltInError.t v v i e i e e

16 Chronological Backtracking

16.1 Introducing amb

16.2 Examples of amb in Action

16.2.1 The “Liars” Puz
16.2.2 Barrels of Fun

zle . o

16.2.3 Pythagorean Triples

16.2.4 Parsing Natural
16.3 Implementing amb . .

Language

16.3.1 Changes to Continuations o e

16.3.2 Mechanical Tran

sformations of the Interpreter

16.3.3 Remaining Continuation Changes

16.3.4 amb Itself . . .
16.3.5 Changes to defi
16.3.6 Changes to set!
16.3.7 Changes to repl
16.3.8 Additional Chan
16.4 Support for Testing amb
16.4.1 and and or . .
16.4.2 Numeric Inequal
16.4.3 eq?
16.4.4 Wiring it up .
16.5 Summary and Direction

N€ . . . L L e

O e
e

ity Tests

e

16.5.1 An Alternative Implementation L.

16.6 Tests
16.7 Listings
16.7.1 t/PScm_Compare
16.7.2 t/AMB_repl.t .
16.7.3 t/AMB_amb.t .

v

17 Unification and Logic Programming
17.1 Logic Programming Examples

17.1.1 Mary and John

17.1.2 J.S. Bach and Family

17.1.3 Appending Lists

vil

231
234
234
235
235

237
237
239
245
246
246

249
249
252
252
257
258
260
266
266
267
270
272
273
274
275
278
279
279
281
282
283
285
285
286
287
287
289
290

viil

17.1.4 Factorial Again
17.1.5 Symbolic Differentiation
17.2 Pattern Matching L.
17.2.1 A Perl Pattern Matcher
17.3 Unification
17.3.1 A Perl Unifier.

17.3.2 Implementing unify in PScheme

17.4 Logic Programming
17.5 More Logic Programming Examples
17.5.1 Parsing (again)

17.5.2 Simplifying Algebraic Expressions
17.6 Summary, Shortcomings and Short-cuts

17.6.1 Functors and Arity
176.2 The Cut
17.6.3 Backtracking Efficiency
177 Tests o o
17.8 Listingso
17.8.1 t/PScm Unify.t
17.8.2 t/AMBLURIEY.E . . o o oo

18 Summary
Bibliography

Index

CONTENTS

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3

5.1
5.2
5.3
0.4
9.5
5.6

6.1
6.2

7.1

8.1
8.2
8.3

9.1

12.1
12.2
12.3

13.1
13.2
13.3
13.4
13.5

Example PScheme Structure for (foo ("bar" 10) baz) 17
PScm:Expr classes e 22
PScm::Expr new() and value() methods 23
PScm::Expr Eval() Methods 25
PScm::Expr as_string() methods 30
PScm::Expr methods e 32
Stacks Destroy Old Environment Frames L. 50
Linked Lists Don’t Destroy Old Environment Frames 51
Environment during evaluation of example “let”, 52
Functions extend an environment just like let does. 60
Closures extend the lexical environment 60
let bindsnto 2 e 63
Closure Captures the Local Environment 65
let binds times2 and a L 65
Closure Extends Captured Env 67
Why recursion doesn’t work 74
Recursive environments L0 oL 74
Nested environments L e e e e 82
Cons Cell Representation of a nested list (foo ("bar" 10) baz) 90
The pair (a . D) e 90
The structure (a b . C) e e e e e 91
Example mylet internal structure oL L L Lo 110
Notional object structure 142
Real object structure 143
Example classes and objects Lo 152
Producer/consumer pair 160
Tail call without TCO e e 162
Tail call with TCO e 163
Control flow for the simple script 181
Control flow with continuations 184

X

13.6
13.7

16.1
16.2
16.3
16.4

17.1
17.2
17.3

LIST OF FIGURES

Continuations are just (anonymous) subroutines 184
Continuations really are just subroutines oo 184
Control flow during (1ist (amb 1 2) (amb ’a ’b)) 251
One possible parse of “Time flies like an arrow” 261
A parse tree for “Fruit flies like a bannanna” 262
define installs a failure continuation last 274
Bach’s Family Tree o o 301
Unification of [’£’, [’g’, ’A’], °A’] with [’f’>, °B’, ’abc’] 312

A more complex unification example 313

Part 1

Implementing a Scheme-Like Interpreter

Chapter 1

Introduction

Why would anyone want to write a Scheme interpreter in Perl?
— Felix Lee

Madness.
— Larry Wall

By the end of this book you should have a thorough understanding of the inner workings of a programming
language interpreter. The source code is presented in full, and several iterations add more features until
it could be considered pretty complete. The interpreter is written to be as easy to understand as possible;
it has no clever optimizations that might obscure the basic ideas, and the code and the ideas will be
described to the best of my ability without any unexplained technical jargon. It is however assumed that
you have a good working knowledge of Perl (Perl5), including its object-oriented features.

The final implementation will demonstrate:

e primitive arithmetic operations;

e conditional evaluation;

e local variables;

e functions and closure;

e recursion;

e list processing;

e quote—preventing evaluation;

e a simple macro facility;

e variable assignment and side-effects;
e procedures (as opposed to functions) and sequences;
e objects and classes;

e continuations;

4 CHAPTER 1. INTRODUCTION

threads;

e exceptions;

non-determinism and chronological backtracking;
e logic programming.

Having said that, time and space is not wasted fleshing the interpreter out with numerous cut’n’paste
system interfaces, i/o or even much basic arithmetic (the final implementation has only multiplication,
addition and subtraction—enough for the tests and examples to work,) but by then it should be a trivial
matter for anyone to add those themselves if they feel so inclined. Another point worth mentioning
up front is that no claims are made that this is in any way a production-quality, or even an efficient
implementation. It is just meant to be easy to understand.

Putting it another way, if you've come here looking for an off-the shelf scheme-like interpreter that
you can use, you've come to the wrong place: there are many and better freely available implementations
on the net. On the other hand if you’re more interested in how such interpreters might work, I'd like to
think that you might find what you’re looking for here.

1.1 Why Perl?

My motivation for writing this book is that I have always been fascinated by the fact that programming
languages are just programs, but I found it very difficult in the past to work out what was actually going
on in the handful of “public domain”! implementations of programming languages available at the time.
The temptation always seemed to be there for the authors to add all sorts of bells and whistles to their
pet project until the core ideas became obscured and obfuscated. The fact that they were invariably
implemented in the low-level system language C didn’t help matters. It was only when I found out that
the easiest implementations of Scheme to understand were written in Scheme itself that I made any real
progress with that particular language. However implementing an interpreter in terms of itself (so-called
“meta-circular evaluation”) easily leads to confusion, and it struck me that Perl, with its very high-level
constructs and high signal to noise ratio is the perfect vehicle to demonstrate the programming language
concepts that I’ve so painfully gleaned through time, without any incestuous meta-circular issues to deal
with.

Another reason for my wanting to write about programming languages is the wonderful gestalt in-
herant in their construction: how such an apparently small amount of code could achieve so much. This
is of course due to the deeply recursive nature of their design, and this small implementation in Perl
attempts to be as concise and recursive as possible.

1.2 Why Scheme?

Scheme is one of the younger members of the Lisp family of programming languages. LISP stands for
“LISt Processing”?, and this is an appropriate name since the fundamental data type in these languages
is the list.

The main reason for choosing Scheme to demonstrate the internals of an interpreter is that Scheme
is a very simple language, and at the same time an astonishingly powerful one. An analogy might be

lyes, I'm older than your grandfather
20r “Lots of Irritating Single Parentheses”.

1.3. REFERENCES 5

that if C is the “chess” of programming languages, then Scheme is more like “go”. The official standard
for Scheme, the “Revised(6) Report on the Algorithmic Language Scheme” or R6RS [12] as it is known,
has this to say:

Programming languages should be designed not by piling feature on top of feature, but by
removing the weaknesses and restrictions that make additional features appear necessary.

Whether or not one agrees with that, and it’s hard to argue, it strongly suggests that such a consistent
language might be pretty straightforward to implement.

Another interesting feature of Scheme and the Lisp family of languages is that the list data that they
work with is also used to construct the internal representation of the programs themselves. Therefore
Scheme programs can directly manipulate their own syntax trees. This makes the definition of macros
(syntactic extensions) particularly easy from within the language itself, without recourse to any separate
preprocessing stage. Finally, another good reason for choosing Scheme is that it is extremely easy to
parse, as we shall see.

1.3 References

I provide and refer to a select bibliography. Almost all of the concepts in this book are well known in
academic circles and it would be disingenuous of me to try to pass them off as my own. The bibliography
should provide you with a small collection of useful jumping off points should you wish to investigate
any of these topics further.

1.4 Typography

All of the source code listings and extracts from the source are shown in fixed-width type with line
numbers, and are pulled directly from the code of the working interpreter. Furthermore, when displaying
a newer version of an individual method or package, the differences bethween that version and the
previous one are calculated automatically and displayed in bold. Package names are displayed Like::
This and methods like this (). Scheme code looks (1ike this).

Other in-line code, such as Scheme and occasionally Perl examples are unfortunately not so rigorously
constrained. The possibility exists that even though I have manually tested all of those examples there
could be an error or two in there, for which I can only apologise.

1.5 A Note on the Interpreter Versions

You won’t find this interpreter on CPAN. The reason for this is that each version of the interpreter,
while building on the features of previous versions, is a thing of itself and exists to demonstrate specific
pedagogical points. I couldn’t publish only the final version to CPAN since it is fit for no purpose other
than this book and too complex for casual perousal without having first digested the earlier versions.

However each version is available online for you to download and play with, they are linked to from
the text at the end of each chapter.

CHAPTER 1. INTRODUCTION

Chapter 2

An Introduction to PScheme

In subsequent discussions, PScheme means this particular implementation of a Scheme-like interpreter
(Perl-Scheme). The implementation lacks a number of the features of a complete implementation, and
differs from the Scheme standard at a number of points. However it could be argued that it is close
enough to call itself “Scheme-like”, it’s certainly closer to a reference implementation of Scheme than it
is to any other language in the Lisp family.

2.1 PScheme Syntax

PScheme has a very simple syntax. A PScheme expression is either a number, a string, a symbol, or a
list of expressions separated by spaces and enclosed in round brackets (where an expression is either a
number, a string, a symbol, or a list of...). We can write this recursive definition in a special purpose
notation for describing programming language grammars called Backus-Naur Format (BNF) as follows:

(expression) ::= (number)
I (string)
| (symbol)
I '(’ (expression) ... ")’
Read “::=" as “is a”, and “|” as “or”.

“_»

A PScheme number is a sequence of digits, optionally preceded by a “+” or a . PScheme does not
support floating point or other more complex number types.!

A PScheme string is any sequence of characters enclosed by double quotes. Within a string, a double
quote may be escaped with a backslash.

PScheme has a rather more relaxed idea of what constitutes a symbol than most languages, essentially
it’s anything that isn’t an open or close brace and doesn’t look like a number or a string, up to the next
whitespace character or round bracket. So “x”, “this-is-a-symbol”, “<”, “&foo”, and “$%*@!{}” are
all symbols.

PScheme reads an expression, then evaluates it, then prints the result. The rules for evaluation are

also very simple:

e The result of evaluating a number or a string is just that number or string;

LA full Scheme implementation supports a large range of numeric types, from arbitrarily large integers through floating
point, precision-preserving fractions, and complex numbers.

8 CHAPTER 2. AN INTRODUCTION TO PSCHEME

e The result of evaluating a symbol is the value that that symbol currently has, or an error if the
symbol has no value;

e The result of evaluating a list of expressions is the result of evaluating each expression in turn,
then applying the first evaluated expression (which should be a function) to the other evaluated
expressions.

2.2 Simple Expressions

PScheme is an interactive language, it presents a prompt, and the user types in expressions. The
interpreter evaluates those expressions then prints the results:

> 2
2

The “>” is the PScheme prompt. We gave the interpreter a 2, and it replied with 2, because 2 is 2 is 2.
Let’s try something a bit more adventurous:

> X
Error: no binding for x in PScm::Env

We asked for the value of a symbol, x, and because the interpreter doesn’t know what x is, we get an
erTor.
Here’s something that does work:

> (x 2 2)
4

Now that might look strange at first, but remember the first subexpression in a list should evaluate to a
function. The multiplication symbol “*” does indeed evaluate to the internal primitive definition of how
to multiply; we told PScheme to multiply 2 by 2, and it replied 4. In detail what it has done is:

1. evaluate the symbol * to get its value: the multiplication function.
2. evaluate the first 2 to get 2;

3. evaluate the second 2 to get 2;

4. applied the multiplication function to arguments 2 and 2;

5. printed the result: 4.

One important thing to note here is that PScheme makes no distinction between functions and operators,
the operation always comes first. This has some advantages; because the operation always comes first,
it can often apply to variable numbers of arguments:

> (x2222)
16

A more syntax-rich language would require something like 2 * 2 * 2 * 2 to get the same result.
Now for something just a little more complex:

2.3. CONDITIONALS 9

> (x (- 83)2)
10

Here we told the interpreter to subtract 3 from 8, then multiply the result by 2. It did it by:
1. Evaluating the symbol * to get the multiplication function;
2. Evaluating the expression (- 8 3) to get 5, which it did by:
(a) Evaluating the symbol “~” to get the subtraction function;
(b
(c

(d) Applying the subtraction function to arguments 8 and 3.

Evaluating 8 to get §;
Evaluating 3 to get 3;

)
)
)
)

3. Evaluating 2 to get 2;
4. Applying the multiplication function to arguments 5 and 2;

5. Printing the result: 10.

Hopefully it is obvious that the interpreter is following a very simple set of rules here, albeit recursively.

This incidentally demonstrates another big simplification that PScheme makes: it is impossible for
there to be any ambiguity about operator precedence, because the language forces the precedence to be
explicit. In fact there is no notion of operator precedence in PScheme. In a more syntax-rich language,
to achieve the above result one would have to write (8 - 3) * 2 because the equally legal 8 - 3 * 2
would be misinterpreted (a lovely expression) as 8 - (3 * 2).

2.3 Conditionals

The keyword if introduces a conditional statement. The general form of an if expression is:

(if (test)
(true-result)
(false-result))

This is simple enough, if expects (in this implementation at least) three arguments: a test, a consequent
(true result) and an alternative (false result). For example:

In this example since the test, 0, is false (again, in this implementation) the alternative (8 — 3 = 5) is
returned.
Even here we can start to see some of the power of the language:

10 CHAPTER 2. AN INTRODUCTION TO PSCHEME

> ((if 0 - %) 4 b5)
20

In the author’s opinion this is a beautiful example of “removing the weaknesses and restrictions that

make additional features appear necessary”; because the language treats the operator position just like

any other expression, any expression that evaluates to an operation is valid in that position. Furthermore

because primitive operations are represented by symbols just like anything else, they can be treated just

like any other variable: the if with a false (0) test argument selects the value of “¥” to return, rather

than the value of “=”. So it’s the multiplication function that gets applied to the arguments 4 and 5.
However there is a slight complication, Consider this:

> (if 0

> (a-long-calculation)
> (- 8 3))

5

Were if a normal function, the normal rules for evaluation would apply: evaluate all the com-
ponents of the list, then apply the if function to the evaluated arguments. That would mean
(a-long-calculation) and (- 8 3) would both get evaluated, then if would pick the result. Al-
though the value of the whole if expression is unaffected, provided (a-long-calculation) doesn’t
have any side-effects, we still don’t want to have that calculation executed unnecessarily. Now remember
it was said that PScheme evaluates each component of the list in a list expression? Well that’s not
entirely the case. It always evaluates the first component of the list, and if the result is a simple function
like multiplication, it then goes on to evaluate the other items on the list and passes the results to the
function just as has already been described. However if the first component is what is called a special
form, such as the definition of if, PScheme passes the un-evaluated arguments to the special form and
that special form can do what it likes with them.

In the case of if, if evaluates its first argument (the test) and if the result is true it evaluates and
returns its second argument (the consequent), otherwise it evaluates and returns its third argument (the
alternative). We can demonstrate that with a simple example:

> (if 1
> 10
> X)
10

Because the test result was true, the if only evaluated the consequent expression, there was no error
from the undefined symbol x in the alternative.

2.4 Global Variables
define is the way we associate values with global variables in PScheme. It has the general form:
(define (symbol) (expression))

where (symbol) is being bound to the value of (expression).
For example:

2.5. FUNCTIONS 11

> (define x 5)
X

> X

5

In the above example we defined x to be 5. Then when we asked for the value of x PScheme replied 5.
Note again that the operation (define in this case) always comes first. Note also that define must be
a special form, because we didn’t get an error attempting to evaluate x during the definition. define
does however evaluate its second argument so:

> (define a b)
Error: no binding for b in PScm::Env

causes an immediate error attempting to evaluate the undefined symbol b before assigning the result to
a.

2.5 Functions

lambda, another special form, creates a function. The general form of a lambda expression is:
(lambda ({symbol) ...) (ezpression))

The ((symbol) ...) part is the names of the arguments to the function, and the (ezpression) is the
body of the function.
Here’s an example:

> (define square
> (lambda (x) (x x x)))
square

Now that may also look a bit strange at first, but simply put, lambda creates an anonymous function,
and that is separate from giving that function a name with define. The function being defined in this
example takes one argument x and its function body is (¥ x x). The function body will execute when
the function is invoked. This is more or less equivalent to this Perl snippet:

our $square = sub {
my ($x) = @_;
$x * $x;

}s
In fact, Perl’s anonymous sub {...} syntax can be considered pretty much synonymous with PScheme’s

(lambda ...). The big difference is that in PScheme that’s the only way to create a function?.
Having created a square function, it can be called:

2There are examples of Scheme code that show things like:

(define (square x)

(* x x))

This form of define, where the expression being defined is a list, is just syntactic sugar for the underlying form. define
essentially re-writes it into the simpler lambda statement before evaluating it. Since the definition here mimics the intended
usage of the function it is certainly a little bit easier to read, but personally I find that since I have to use lambda in some
expressions anyway, it makes sense to always use it. Plus the syntactic sugar tends to obscure what is really going on. In
any case PScheme does not support this alternative syntax for function definition.

12 CHAPTER 2. AN INTRODUCTION TO PSCHEME

> (square 4)
16

Although square was created by assignment, when it is used it is syntactically indistinguishable from

any built-in function.
Anonymous functions can also be called directly without giving them a name first:

> ((lambda (x) (x x x)) 3)
9

Again this is much simpler than it might first appear. The first term of the list expression, the lambda

expression, gets evaluated resulting in a function which will square it’s argument. That function then
immediately gets applied to 3 resulting in 9. It is possible to do something similar in perl, like this:

sub { my ($x) = @_; $x * $x }->(3);

but it’s not a common idiom.

As an aside, you may be wondering what the eleventh letter of the Greek alphabet has to do with the
creation of a function. The term comes from a branch of mathemetics called the lambda calculus which
is concerned with describing and reasoning about the behaviour of mathematical functions in general.
Even though the lambda calculus was devised before the creation of the first computer, it turns out that
it provides a sound theoretical basis for the implementation of programming languages, and Lisp was the
first programming language to exploit that fact. There is a good introduction to the lambda calculus in
[10], and a more detailed and rigorous treatment in [11].

2.6 Local Variables

Moving on, how can PScheme create local variables limited (lexically) to a given scope? This is done
with the let special form. The general form of a let expression is:

(let ((binding) ...) (expression))
where (binding) is:
({symbol) (expression))

let takes a list of bindings (symbol-value pairs) and a body to execute with those bindings in effect.
For example:

> (let ((a 10)

> (b (+ 10 10)))
> (+ ab))

30

2.6. LOCAL VARIABLES 13

That can be read aloud as “let ¢ = 10 and b = 10 + 10 in the expression a + b”. Symbol a is given the
value 10 and symbol b the value 20 while the body is evaluated. However if a later expression was to ask
for the value of a or b outside of the scope (the last closing brace) of the let, there would be an error
(assuming there weren’t global bindings of a and b in effect.)

The careful reader will have noticed that these were described as lexically scoped variables, and yes,
any functions defined in the scope of those variables are closures just like Perl closures and have access
to those variables when executed even if executed outside of that scope. For example:

> (define times2

> (let ((n 2))

> (lambda (x) (* n x))))
times?2

> (times2 4)

8

When reading this it’s useful to remember that define does evaluate its second argument. That means
that this expression defines times2 to be the result of evaluating the let expression. Now that let
expression binds n to 2, then returns the result of evaluating the lambda expression (creating a function)
with that binding in effect. It is that newly created function that gets bound to the symbol times2.
When times2 is later used, for example in (times2 4), the body of the function (* n x) can still “see”
the value of n that was supplied by the let, even though the function is executed outside of that scope.
This is similar to the common Perl trick to get a private static variable:

{

my $n = 2;

sub times2 {
my ($x) = @_;
$n * $x;

}

but to be truthful it’s closer to the more obtuse:

our $times2 = do {

my $n = 2;

sub {
my ($x) = @_;
$n * $x;

s

And that’s pretty much all that is needed for now. Of course the final language has many other interesting
features, but these will be introduced in later sections as the need arises. Let’s take a look at our first
cut at an interpreter>.

3Tf you want more of an introduction to Scheme in general, you could do worse than look at [6].

14

CHAPTER 2. AN INTRODUCTION TO PSCHEME

Chapter 3

Interpreter Version 0.0.0

This preliminary version of the interpreter supports only three operations, namely multiplication (), sub-
traction (=), and conditional evaluation (if). It does however lay the groundwork for more sophisticated
interpreters later on.

Scheme lisp interpreters, being interactive, are based around what is called a “read eval print loop”:
first read an expression, then evaluate it, then print the result, then loop. This long-winded term is
often abbreviated to repl. In order for the repl to evaluate the expression, there must additionally be an
environment in which symbols can be given values and in which values can be looked up. All this means
that there are six principle components to such an interpreter.

A Reader that constructs internal representations of the expressions to be evaluated;

An Evaluator that actually determines the value of the expression, using

A Structure returned by the Reader, representing the expression (and incidentally returned by
the Evaluator, representing the result);

An Environment in which symbols can be associated with values and the values of symbols can
be looked up.

A Set of Primitive Operations bound to symbols in the initial environment, which implement
all of the individual built in commands.

A Print System which converts the result of evaluation back to text and displays it to the user.

The implementation we’re about to discuss takes a fairly strict OO approach, with each of these com-
ponents and pretty much everything else represented by classes of objects. As a consequence of this the
Evaluator and the Print system are distributed throughout the Structure component. This means that
for example to evaluate an expression you call its Eval method, and to print a result you call the Print
method on the result object. There is a good deal of scope for polymorphism with this approach, since
different types of object can respond differently to the same message.

3.1 The Read-Eval-Print Loop

The top-level read-eval-print loop (repl) for the PScheme interpreter is in the package PScm in List-
ing 3.11.1 on page 34. All other packages inherit from this package, although that’s mainly just a
convenience.

15

16 CHAPTER 3. INTERPRETER VERSION 0.0.0

Firstly, on Lines 31-35 a global environment, $PScm: :GlobalEnv is initialised to a new PScm::Env
object.

031 our $GlobalEnv = new PScm: :Env(

032 ’x’ => new PScm::Primitive::Multiply(),
033 ’-> => new PScm::Primitive::Subtract(),
034 if => new PScm::SpecialForm::If(),

035);

There are only three things in that environment. They are the objects that will perform the primitive
operations of multiplication, subtraction and conditional evaluation, and they’re bound to “*”, “~” and
“if” respectively. We’ll see how they work presently.

ReadEvalPrint () on Lines 37-46 is the central control routine of the whole interpreter. It takes an
input file handle and an output file handle as arguments. Starting on Line 40 it defaults the output
file handle to stdout, then on Line 41 it creates a new PScm::Read object on the input file handle,
and on Lines 42-45 it enters its main loop. The loop repeatedly collects an expression from the Reader,
then evaluates the expression by calling its Eval () method, then prints the result by calling its Print ()
method:

037 sub ReadEvalPrint {

038 my ($infh, $outfh) = @_;

039

040 $outfh | |= new FileHandle(">-");

041 my $reader = new PScm::Read($infh);

042 while (defined(my $expr = $reader->Read)) {
043 my $result = $expr->Eval();

044 $result->Print ($outfh);

045 }

046 }

The basis of the print system can be seen in the Print() and as_string() methods in PScm.pm, but
we’re going to leave discussion of the print system until later on. In the next section we’ll look at our
first, very simple, implementation of an environment.

3.2 The Environment

All an environment has to do is to return the current value for an argument symbol. Perl hashes are
ideal for this task, and our implementation uses them. Our environment is implemented by PScm::Env
in Listing 3.11.2 on page 36.

It is no more than an object wrapper around a Perl hash. The new() method (Lines 7-11) creates an
object with a set of bindings (name to value mappings) that were passed in as arguments:

007 sub new {

008 my ($class, %bindings) = @_;
009
010 bless { bindings => {/bindings}, }, $class;

o1t }

3.3. THE READER 17

The LookUp () method on Lines 13-22 looks up a symbol in the bindings, die-ing if the symbol does not
have a binding:

013 sub LookUp {

014 my ($self, $symbol) = @_;

015

016 if (exists($self->{bindings}{ $symbol->value })) {
017 return $self->{bindings}{ $symbol->value };
018 } else {

019 die "no binding for @{[$symbol->value]l} ",

020 "in Of [ref ($self)]}\n";

021 }

022 }

Note that the $symbol passed in is an object, and LookUp() must call the symbol’s value() method
to get a string suitable for a hash key. The value () method for a symbol just returns the name of the
symbol as a perl string.

Because this first version of the interpreter has no support for local variables, this class doesn’t
provide any methods for adding values to the environment. That will come later.

And that’s all there is to our environment class. Let’s move on to look at the Reader.

3.3 The Reader

The job of the Reader is to take a stream of text and convert it into a structure that the evaluator can
more easily work with. So for example we want to take an expression such as (foo ("bar" 10) baz)
and convert it into an equivalent structure such as shown in Figure 3.1.

Figure 3.1: Example PScheme Structure for (foo ("bar" 10) baz)

List |
K ° ° |
\d \d \d
|Symbol | List ||Symbol |
lfoo ll ® ® Jlbaz l
\d \d
| String | Number

l"bar" Illo

(foo ("bar" 10) baz)

18 CHAPTER 3. INTERPRETER VERSION 0.0.0

In this figure, showing the result of parsing that expression, the top-level list object has three components.
Reading left to right it contains the symbol object foo, another list object and the symbol object baz. The
sub-list contains the string object "bar" and the number object 10. It is apparent that that the structure
is a direct representation of the text, where each list corresponds to the contents of a matching pair of
braces. It should also be obvious that these structures are practically identical to Perl list references.
The scheme list (foo ("bar" 10) baz) corresponds directly to the nested perl listref [$foo, ["bar",
101, $bazll.

To simplify the creation of such a structure from an input stream, it is often convenient to split the
process into two parts:

A tokeniser which recognises and returns the basic tokens of the text (braces, symbols, numbers and
strings);

A builder or parser which assembles those tokens into meaningful structures (lists).

That is the approach taken by the Reader described here.

It was mentioned earlier that Scheme was extremely easy to parse, well here’s the proof. The code
for the Reader, PScm::Read in Listing 3.11.3 on page 37 is only 63 lines long.
As with the rest of the implementation, it uses an OO style, so the Reader is an object that is created
with an argument FileHandle and behaves as an iterator returning the next parsed expression from
the stream on each call to Read(). The new() method (Lines 9-15) simply stashes its input file handle
argument along with an empty string representing the current line, and returns them in the new object.

009 sub new {

010 my ($class, $fh) = @_;
011 bless {

012 FileHandle => $fh,
013 Line = 27
014 }, $class;

015 }

Apart from new() the only other publicly available method is Read (), which returns the next complete
expression, as a structure, from the input file. The Read() method calls the private _next_token()
method (the tokeniser) for its tokens.

Skipping over the Read () method for now, next_token() on Lines 38-61 simply chomps the next
token off the input stream and returns it. It knows enough to skip whitespace and blank lines and to
return undef at EOF (Lines 41-45). If there is a line left to tokenise, then a few simple regexes are tried in
turn to strip the next token from it. As soon as a token of a particular type is recognised, it is returned
to the caller.

038 sub _next_token {

039 my ($self) = @_;

040

041 while (!$self->{Line}) {

042 $self->{Line} = $self->{FileHandle}->getline();
043 return undef unless defined $self->{Line};

but looks a lot prettier.

3.3. THE READER 19

044 $self->{Line} ="~ s/ \s+//s;

045 }

046

047 for ($self->{Line}) {

048 s/"\(\s*// && return PScm::Token: :0Open->new();
049 s/"\)\s*x// &% return PScm::Token::Close->new();
050 s/~ ([-+]17\d+)\s*//

051 && return PScm::Expr::Number->new($1);

052 /77 (AN (L") *)"\sx// && do {

053 my $string = $1;

054 $string =" s/\\//g;

055 return PScm::Expr::String->new($string);
056 +s

057 s/~ (["\s\(\)1+)\s*//

058 && return PScm::Expr::Symbol->new($1);

059 }

060 die "can’t parse: $self->{Line}";

061 }

Lines 47-59 do the actual tokenisation. The tokeniser only needs to distinguish open and close braces,
numbers, strings and symbols, where anything that doesn’t look like an open or close brace, a number
or a string must be a symbol. _next_token() returns its data in objects, which incidentally happens
to be a very convenient way of tagging the type of token returned. The objects are of two basic types:
PScm::Token; and PScm::Expr.

The PScm::Token types PScm::Token::Open and PScm::Token::Close represent an open and
a close brace respectively, and contain no data. The three PScm::Expr types, PScm::Expr::Number,
PScm::Expr::String and PScm::Expr::Symbol contain the relevant number, string or symbol.

Now that we know how _next_token() works, we can go back and take a look at Read ().

The Read () method (Lines 17-36) has to return the next complete expression from the input stream.
That could be a simple symbol, string or number, or an arbitrarily nested list. It starts by calling
next_token() at Line 20 and returning undef if next_token() returned undef (signifying end of file).

017 sub Read {

018 my ($self) = @_;

019

020 my $token = $self->_next_token();
021 return undef unless defined $token;
022

023 return $token unless $token->is_open_token;
024

025 my Qres = ();

026

027 while (1) {

028 $token = $self->Read;

029 die "unexpected EOF"

030 if !defined $token;

031 last if $token->is_close_token;

20 CHAPTER 3. INTERPRETER VERSION 0.0.0

032 push Qres, $token;

033 }

034

035 return new PScm::Expr::List(@res);
036 }

Then, at Line 23 if the token is anything other than an open brace (determined by the call to is_open_-
token()?), Read () just returns it. Otherwise, the token just read is an open brace, so Read () initialises
an empty result @res to hold the list it expects to accumulate then enters a loop calling itself recursively
to collect the (possibly nested) components of the list. It is an error if it detects EOF while a list is
unclosed, and if it detects a close brace (is_close_token()) it knows its work is done and it returns the
accumulated list as a new PScm::Expr::List object.

The structure returned by Read() is completely composed of subtypes of PScm::Expr, since the
PScm::Token types do not actually get entered into the structure. Let’s work through the parsing of
that simple expression (foo ("bar" 10) baz). In the following, the subscript number keeps track of
which particular invocation of Read() we are talking about.

e Read; calls next_token() and gets a (so it enters its loop.

e Read; calls Ready from within its loop.
— Read, calls next_token() and gets a foo, so it returns it.

e Read; puts the foo at the start of its list: (foo.

e Read; calls Reads.

— Readj calls _next_token() and gets a (so it enters its loop.
— Readj calls Ready.
+* Read, calls next_token() and gets a "bar" so it returns it.
— Readjs puts the "bar" at the start of its list: ("bar".
— Readj calls Reads.
* Ready calls next_token() and gets a 10 so it returns it.
— Readj adds the 10 to its growing list: ("bar" 10.
— Readj calls Readg.
* Readg calls next_token() and gets a) so it returns it.
— Readj gets the) so it knows it has reached the end of its list and returns the result: ("bar"

10).

e Read; adds the ("bar" 10) to the end of its own growing list: (foo ("bar" 10).

It could have just said
return $token unless $token->isa(’PScm::Token: :0pen’);

but I always think it’s a bit rude to peep into the implementation like that, much better to ask it what it thinks it is, not
forcibly extract its data type.

3.3. THE READER 21

Read; calls Read;.

— Read; calls next_token() and gets a baz so it returns it.

Read; adds the baz to the end of its own growing list: (foo ("bar" 10) baz.

Read; calls Reads.

— Readg calls _next_token() and gets a) so it returns it.

Read; gets the) so it knows it has reached the end of its list and returns the result: (foo ("bar"
10) baz).

So the Reader does indeed return the structure expected.

The PScm::Token and PScm::Expr classes are in their eponymous files. The PScm::Token

classes in Listing 3.11.4 on page 39 are purely parse-related. As mentioned earlier, they are returned
by the tokeniser to indicate open and close braces. These tokens are used to guide the parser, but it
does not actually include them in the result. PScm::Token::Open and PScm::Token::Close both
inherit from PScm::Token. PScm::Token defines default implementations for is_open_token() and
is_close_token(), which the two derived classes override appropriately. PScm::Token is just:

001
002
003
004
005
006
007
008

package PScm: :Token;

use strict;
use warnings;
use base qw(PScm) ;

sub is_open_token { 0 }
sub is_close_token { 0 }

PScm::Token::Open overrides is_open_token():

011
012
013
014
015

package PScm: :Token: :0Open;
use base qw(PScm::Token);

sub is_open_token { 1 }

and PScm::Token::Close overrides is_close_token():

018
019
020
021
022
023
024

package PScm::Token: :Close;
use base qw(PScm: :Token) ;
sub is_close_token { 1 }

1;

PScm::Token inherits a stub new() method from the PScm class that just blesses an empty hash with
the argument class.

22 CHAPTER 3. INTERPRETER VERSION 0.0.0

As for the PScm::Expr objects that Read() accumulates and returns, as noted Read () has done all of
the work in constructing a tree of them for us, so they are more properly discussed in the next section
where we look at expressions.

3.4 PScheme Expressions

The various PScm::Expr objects are defined in PScm/Expr.pm. These objects represent the basic data
types that are visible to the user: strings; numbers; symbols; and lists. They are the types returned
by the Reader and printed by the print system. It would be premature to go into all the details of the
PScm::Expr package right now, but it is worth pointing out a few salient features about it.

Firstly the classes arrange themselves in a Composite Pattern [8, ppl63-173| according to the hier-
archy of PScheme types as in Figure 3.2.

Figure 3.2: PScm::Expr classes

Y

PScm::Expr

Pscm::Expr::List PScm::Expr::Atom
PScm::Expr::Literal PScm::Expr::Symbol
PScm::Expr::String PScm::Expr::Number

This figure is drawn using a standard set of conventions for diagramming the relationships between
classes in an OO design, called “the Unified Modelling Language”, or UML. [5]

For those who don’t know UML, the triangular shape means “inherits from” or “is a subclass of”,
and the black arrow and circle coming from the white diamond means “aggregates zero or more of”.
The classes with names in italics are “abstract” classes. As far as Perl is concerned, calling a class
“abstract” just means that we promise not to create any actual object instances of that particular class.
The unterminated dotted line simply implies that we will be deriving other classes from PScm::Expr
later on.

The root of the hierarchy is PScm::Expr, representing any and all expressions. That divides into
lists (PScm::Expr::List) and atoms (PScm::Expr::Atom).

3.4. PSCHEME EXPRESSIONS 23

Lists are composed of expressions (the aggregation relationship.)

Atoms represent any data type that cannot be trivially taken apart, anything that’s not a list in
other words. Atoms are subclassed into literals (PScm::Expr::Literal) and symbols (PScm::Expr::
Symbol), and literals are subclassed into strings (PScm::Expr::String) and numbers (PScm::Expr::
Number).

We’ll see a lot of this diagram in various guises as we progress. Here’s the same diagram, in Figure 3.3
with the location of the new() and value() methods added.

Figure 3.3: PScm::Expr new() and value() methods

PScm::Expr

Y

value

Pscm::Expr::List PScm::Expr::Atom
new new
value value
PScm::Expr::Literal PScm::Expr::Symbol
PScm::Expr::String PScm::Expr::Number

new

As you can see, there are three new() methods in the class structure. The PScm::Expr::Atom abstract
class is the parent class for strings and numbers (via PScm::Expr::Literal) and for symbols. Since all
of these types are simple scalars, the new() method in PScm::Expr::Atom does for most of them: it
blesses a reference to the scalar into the appropriate class.

023 sub new {

024 my ($class, $value) = @_;
025 bless \$value, $class;
026 }

However the PScm::Expr::Number package supplies its own new () method, because we avail ourselves
of the core Math::BigInt package for our integers. While it is nice to have arbitrary sized integers by
default, the main reason for doing this is to avoid the embarrassment of Perl’s automatic type conversion
to floating point on integer overflow when implementing a language that is only supposed to support
integer arithmetic.

24 CHAPTER 3. INTERPRETER VERSION 0.0.0

082 package PScm: :Expr: :Number;
083 use base qw(PScm::Expr::Literal);

084
085 use Math::Biglnt;

086

087 sub new {

088 my ($class, $value) = @_;

089 $value = new Math::BigInt($value) unless ref ($value);
090 $class—>SUPER: :new($value) ;

o9t }

The PScm::Expr::List class has the other new() method that simply bundles up its argument Perl] list
in a new object:

036 sub new {

037 my ($class, @list) = @_;

038

039 $class = ref($class) || $class;
040 bless [@list], $class;

041 }

All three of these new() methods have already been seen in action in the Reader.
Alongside most of the new() methods is a value () method that does the exact reverse of new() and
retrieves the underlying value from the object. In the case of atoms, it dereferences the scalar value:

o028 sub value { ${ $_[0] } }

and in the case of lists, it dereferences the list:

043 sub value { @{ $_[0] } }

Even though PScm::Expr::Number has its own new() method, we don’t need a separate value()
method for numbers, we never need to retrieve the actual perl number from the Math::BigInt object so

we just inherit value () from PScm::Expr::Atom. We do however provide a default value () method
in PScm::Expr. This default method just returns $self.

017 sub value { $_[0] }

This is solely for the benefit of those as-yet undescribed additional PScm::Expr subclasses, which will
all stand for their own values.

We'’ve seen that the various PScheme expression types (lists, numbers, strings and symbols) arrange
themselves naturally into a hierachy of types and also form a recognised design pattern called “Compos-
ite”. Next we’re going to look at how those expressions are evaluated.

3.5. EVALUATION 25

Figure 3.4: PScm::Expr Eval() Methods

=J PScm::Expr

Eval

__________________ :
I
i

—<>| Pscm:Expr::List PScm::Expr::Atom

Eval L|l
PScm::Expr::Literal PScm::Expr::Symbol
L|l Eval
PScm::Expr::String PScm::Expr::Number

3.5 Evaluation

To evaluate a PScm::Expr, as mentioned earlier, the top level ReadEvalPrint () loop just calls the
expression’s Eval () method. The Eval () methods of PScm::Expr are located in three of its subclasses
as shown in Figure 3.4.

The figure shows that there is a separate Eval () method for lists and for symbols, and a default method
for all other PScm::Expr.

3.5.1 Evaluation of Literals

Let’s look first at the default Eval () method in PScm::Expr which currently applies to literals. PScm::
Expr::String and PScm::Expr::Number share this default Eval () method, which just returns $self:

012 sub Eval {

013 my ($self) = @_;
014 return $self;
015 }

This means that numbers and strings evaluate to themselves, as they should, and if we were to add other
types of expression later on, they too would by default evaluate to themselves.
3.5.2 Evaluation of Symbols

Evaluation of a symbol is only slightly more complex. The Eval() method in PScm::Expr::Symbol
looks up its value in the global environment $PScm: : GlobalEnv:

26 CHAPTER 3. INTERPRETER VERSION 0.0.0

o72 sub Eval {

073 my ($self) = @_;
074 return $PScm: :GlobalEnv->LookUp($self) ;
o075}

Remember that LookUp () from PScm::Env expects a symbol object as argument and calls its value ()
method to get a string that it can then use to retrieve the actual value from the hash representing the
environment.

3.5.3 Evaluation of Lists

Before showing how PScm::Expr::List objects are evaluated, we need to consider a couple of support
methods for lists: first() and rest().
The first () method of PScm::Expr::List just returns the first component of the list:

045 sub first { $_[0][0] }

The rest() method of PScm::Expr::List returns all but the first component of the list as a new
PScm::Expr::List object:

047 sub rest {

048 my ($self) = @_;

049

050 my Ovalue = $self->value;
051 shift @value;

052 return $self->new(@value);
053 }

Now we can look at the evaluation of list expressions. Here’s PScm: :Expr: :List::Eval():

062 sub Eval {

063 my ($self) = @_;

064 my $op = $self->first()->Eval();
065 return $op->Apply($self->rest);
066 }

It’s surprisingly simple. a PScm::Expr::List just evaluates its first element (Line 64). That should
return one of PScm::Primitive::Multiply, PScm::Primitive::Subtract or PScm::SpecialForm::
If, which gets assigned to $op. Of course because we're not doing any error checking, first() could
return anything, so we’re assuming valid input.

Because PScm::Expr::List’s Eval () does not know or care whether the operation $op it derived on
Line 64 is a simple primitive or a special form, on Line 65 it passes the rest of itself (the list of arguments)
unevaluated to that operations Apply () method which applies itself to those arguments. Each individual
operation’s Apply () method will decide whether or not to evaluate its arguments, and what to do with
them afterwards>.

3Lisp purists might raise an eyebrow at this point, because Eval() is supposed to know what kind of form it is evaluating
and decide whether or not to evaluate the arguments. But this is an object-oriented application, and it makes much more
sense to leave that decision to the objects that need to know.

3.6. PRIMITIVE OPERATIONS 27

So we’ve seen how PScm::Expr objects evaluate themselves. In particular we’ve seen how a list
evaluates itself by evaluating its first component to get a primitive operation or special form, then calling
that object’s Apply () method with the rest of the list, unevaluated, as argument. Next we’re going to
look at one of those Apply () methods, the PScm::Primitive Apply() method.

3.6 Primitive Operations

The primitive built-in functions all live in PScm/Primitive.pm, shown in Listing 3.11.5 on page 40.
This class holds all of the code for simple functions that can be passed already evaluated arguments.
You can see that it in fact inherits from PScm::Expr rather than directly from PScm, which explains
the dotted line in the various PScm::Expr figures.

This base PScm::Primitive class provides the Apply () method for all simple functions:

007 sub Apply {

008 my ($self, $form) = @_;
009
010 my Qunevaluated_args = $form->value;
011 my @evaluated_args = map { $_->Eval() } Ounevaluated_args;
012 return $self->_apply(@evaluated_args);
013
}

On Line 10 it extracts the arguments to the operation from the $form by calling the $form’s value ()
method. $form is a PScm::Expr::List and we’ve already seen that the value () method for a list object
dereferences and returns the underlying list. Then, on Line 11, Apply() evaluates each argument by
mapping a call to each one’s Eval () method. Finally, on Line 12, it passes the resulting list of evaluated
arguments to a private _apply () method and returns the result.

_apply) is implemented differently by each primitive operation. So each primitive operation—each
subclass of PScm::Primitive—only needs an _apply () method which will be called with a list of already
evaluated arguments.

The _apply) in PScm::Primitive::Multiply is very straightforward. It simply multiplies its ar-
guments together and returns the result as a new PScm::Expr::Number. Note that, somewhat ac-
cidentally, if only given one argument it will simply return it, and if given no arguments it will return
1.

028 sub _apply {

029 my ($self, Qargs) = O_;

030

031 my $result = PScm::Expr::Number->new(1)->value();
032

033 while (@args) {

034 my $arg = shift Qargs;

035 $self->_check_type($arg, ’PScm::Expr::Number’);
036 $result *= $arg->value;

037 }

038

039 return new PScm::Expr::Number ($result);

040 }

28 CHAPTER 3. INTERPRETER VERSION 0.0.0

On Line 31 the rather convoluted trick to get an initial value will work whether or not the underlying
implementation of PScm::Expr::Number uses Math::BigInt or not.

The _check_type() method in the base class just saves us some typing, since we are checking the
type of argument to the primitive:

015 sub _check_type {

016 my ($self, $thing, $type) = @_;

017

018 die "wrong type argument(", ref($thing), ") to ", ref($self),
019 "\n"

020 unless $thing->isa($type);

021 }

PScm::Primitive::Subtract’s _apply () method is more complicated only because it distinguishes be-
tween unary negation (- x) and subtraction. If it gets only one argument it returns its negation,
otherwise it subtracts subsequent arguments from the first one. It will return 0 if called with no argu-
ments.

047 sub _apply {

048 my ($self, Gargs) = @_;

049

050 unshift @args, PScm::Expr::Number->new(0) if Qargs < 2;
051

052 my $arg = shift Qargs;

053 $self->_check_type($arg, ’PScm::Expr::Number’);

054

055 my $result = $arg->value;

056

057 while (@args) {

058 $arg = shift Qargs;

059 $self->_check_type($arg, ’PScm::Expr::Number’);
060 $result -= $arg->value;

061 }

062

063 return new PScm: :Expr::Number($result) ;

064 }

That’s all the primitive operations we support. There are a whole host of others that could trivially be
added here and it might be entertaining to add them, but all the really interesting stuff is happening
over in the special forms, discussed next.

3.7 Special Forms

All the code for special forms is in PScm/SpecialForm.pm in Listing 3.11.6 on page 42. Like PScm::
Primitive it descends from PScm::Expr.

At the moment there is only one special form, if, so the listing is short. It will get longer in subsequent
versions though.

3.8. OUTPUT 29

For special forms, the Apply () method is in the individual operation’s class. On Line 15 PScm::
SpecialForm::If’s Apply () method extracts the condition, the expression to evaluate if the condition is
true, and the expression to evaluate if the condition is false, from the argument $form. Then on Line 17
it evaluates the condition, and calls the result’s isTrue () method to determine which branch to evaluate:

012 sub Apply {

013 my ($self, $form) = @_;

014

015 my ($condition, $true_branch, $false_branch) = $form->value;
016

017 if ($condition->Eval()->isTrue) {

018 return $true_branch->Eval();

019 } else {

020 return $false_branch->Eval();

021 }

022 }

If the condition is true, PScm: : SpecialForm: : If: : Apply () evaluates and returns the true branch (Line
18), otherwise it evaluates and returns the false branch (Line 20). The decision of what is true or false
is delegated to an isTrue() method. The one and only isTrue() method is defined in PScm/Expr.pm
right at the top of the data type hierarchy, in the PScm::Expr class as:

007 sub isTrue {

008 my ($self) = Q_;
009 scalar ($self->value) ;
o010 }

Remembering that value () just dereferences the underlying list or scalar, isTrue() then pretty much
agrees with Perl’s idea of truth, namely that zero, the empty string, and the empty list are false,
everything else is true?.

That really is all there is to evaluation. Next we’re going to take a look at the print system.

3.8 Output

After Eval () returns the result to the repl, ReadEvalPrint () calls the result’s Print () method with
the output handle as argument. That method is defined in PScm.pm

048 sub Print {

049 my ($self, $outfh) = O_;
050 print $outfh $self->as_string, "\n";
051 }

All it does is print the string representation of the object obtained by calling its as_string() method.
A fallback as_string() method is provided in this class at Line 53.

4This differs from a true Scheme implementation where special boolean values #t and #f represent truth and falsehood,
and everything else is true. The reason for having an isTrue() is to encapsulate the chosen behaviour. If we wanted to
change the meaning of truth, we need only do so here.

30 CHAPTER 3. INTERPRETER VERSION 0.0.0

053 sub as_string { ref($_[01); }

It just returns the class name of the object. This is needed occasionally in the case where internals such
as primitive operations might be returned by the evaluator, for example:

> x
PScm: :Primitive: :Multiply

But that is an unusual and usually unintentional situation. The main as_string() methods are strate-
gically placed around the by now familiar PSem::Expr hierarchy, as shown in Figure 3.5.

Figure 3.5: PScm::Expr as_string() methods

Y

PScm::Expr

—<>| Pscm:Expr::List PScm::Expr::Atom
as_string as_string
PScm::Expr::Literal PScm::Expr::Symbol
PScm::Expr::String PScm::Expr::Number

as_string

The as_string() method in PScm::Expr::Atom is just a call to value():
030 sub as_string { $_[0]->value }

That method works for both symbols and numbers.
PScm::Expr::List’s as_string() method returns a string representation of the list by recursively
calling as_string() on each of its components and concatenating the result, separated by spaces and

wrapped in braces®.

055 sub as_string {
056 my ($self) = Q_;
057 return ’(°

®We haven’t seen anything yet that might, when evaluated, return a list for printing. That’s for later.

3.9. SUMMARY 31

058 . join(’ ’, map { $_->as_string } $self->value)
059 L)
060 }

Finally, PScm::Expr::String’s as_string () method at Lines 97-104 overrides the one in PScm::Expr::
Atom because it needs to put back any backslashes that the parser took out, and wrap itself in double
quotes.

097 sub as_string {

098 my ($self) = @_;
099
100 my $copy = $self->value;

101 $copy =" s/\\/\\\\/sg;
102 $copy =" s/"/\\"/sg;
103 return qq’"$copy"’;

104 }

3.9 Summary

We're finally in a position to understand the whole of PScm::Expr as shown in Listing 3.11.7 on page 43.
The final version of our diagram, with all of the methods from PScm::Expr in place is shown in
Figure 3.6 on the following page.

That may seem like a lot of code for what is effectively just a pocket calculator, but what has been
done is to lay the groundwork for a much more powerful set of language constructs that will be added
in subsequent chapters. Let’s recap with an overview of the whole thing.

e A global environment is set up in the PScm package, containing bindings for defined operations.

e The top-level read-eval-print loop (repl) in the PScm package creates a PScm::Read object and
repeatedly calls its Read () method.

e That Read () method returns PScm::Expr objects which the repl evaluates. It evaluates them by
calling their Eval () method.

— PScm::Expr::Number and PScm::Expr::String objects both share an Eval() method
that just returns the object unevaluated.

— PScm::Expr::Symbol objects have an Eval () method that looks up the value of the symbol
in the global environment.

— PScm::Expr::List objects have an Eval() method that evaluates the first component of
the list, which should return a primitive operation or special form, then calls that operations
Apply () method with the remaining unevaluated components of the list as argument. What
happens next depends on the type of the operation.

Sespecially one where the + and / keys don’t work.

32 CHAPTER 3. INTERPRETER VERSION 0.0.0

Figure 3.6: PScm::Expr methods

;J PScm::Expr

isTrue
Eval
value
T |
|
|
|
—> Pscm::Expr::List PScm::Expr::Atom
new new
value value
first as_string
rest
as_string
Eval
PScm::Expr::Literal PScm::Expr::Symbol
[ﬁ Eval
PScm::Expr::String PScm::Expr::Number
as_string new

* PScm::Primitive objects share an Apply () method that evaluates each of the arguments
and then passes them to the individual primitive’s private _apply () method.

* PScm::SpecialForm objects each have their own Apply () method that decides whether,
and how, to evaluate the arguments.

e The repl then takes the result of the evaluation and calls its Print () method, which is defined in
the PScm base class.

— That Print () method just calls $self->as_string() and prints the result.

* The PScm::Expr::Atom class has an as_string() method that returns the underlying
scalar, but PScm::Expr::String provides an override that wraps the result in double
quotes.

* The PScm::Expr::List class has an as_string() method that recursively calls as_-
string() on its components and returns the result wrapped in braces.

At the heart of the whole interpreter is the dynamic between Eval() which evaluates expressions, and
Apply () which applies operations to their arguments.

3.10. TESTS 33

3.10 Tests

The test module for our first version of the interpreter is in Listing 3.11.8 on page 46. The PScm::Test
package shown in Listing 3.11.9 on page 47 provides an eval_ok() sub which takes a string expression,
writes it out to a file, and calls ReadEvalPrint () on it, with the output redirected to another file. It
then reads that output back in and compares it to its second argument’. The various simple tests just
exercise the system.

To allow users to play a little more with the interpreter, there’s a tiny interactive shell that requires
Term::ReadLine::Gnu and the libreadline library. It’s in t/interactive and can be run, without
installing the interpreter, by doing:

$ perl -Ilib ./t/interactive

from the root of any version of the distribution. It’s short enough to show here in its entirety, in
Listing 3.11.10 on page 48.

7Ok, I should have used IO::String, so sue me.

34 CHAPTER 3. INTERPRETER VERSION 0.0.0

3.11 Listings

3.11.1 PScm.pm

001 package PScm;

002

003 use strict;

004 use warnings;

005 use PScm::Read;

006 use PScm::Env;

007 use PScm::Primitive;
008 use PScm::SpecialForm;
009 use FileHandle;

010

011 require Exporter;

012

013 our QISA = qw(Exporter) ;

014 our Q@EXPORT = qw(ReadEvalPrint);
015

016 =headl NAME

017

018 PScm - Scheme-like interpreter written in Perl
019

020 =headl SYNOPSIS

021

022 use PScm;
023 ReadEvalPrint($in_filehandle[, $out_filehandle]);

024

025 =headl DESCRIPTION

026

027 Just messing about, A toy lisp interpreter.
028

029 =cut

030

031 our $GlobalEnv = new PScm::Env(

032 >%? => new PScm::Primitive::Multiply(),
033 ’-> => new PScm::Primitive::Subtract(),
034 if => new PScm::SpecialForm::If(),

035);

036

037 sub ReadEvalPrint {

038 my ($infh, $outfh) = @_;

039

040 $outfh ||= new FileHandle(">-");

041 my $reader = new PScm::Read($infh);

042 while (defined(my $expr = $reader->Read)) {
043 my $result = $expr->Eval();

044 $result->Print ($outfh);

045 }

046 }

047

048 sub Print {
049 my ($self, $outfh) = @_;

3.11. LISTINGS 35

050 print $outfh $self->as_string, "\n";
051 }

052

053 sub as_string { ref($_[01); }

054

055 sub new { bless {}, $_[0] }

056

057 1;

36 CHAPTER 3. INTERPRETER VERSION 0.0.0

3.11.2 PScm/Env.pm

001 package PScm: :Env;
002

003 use strict;

004 use warnings;

005 use base qw(PScm);

006

007 sub new {

008 my ($class, %bindings) = @_;

009

010 bless { bindings => {%bindings}, }, $class;

011 }

012

013 sub LookUp {

014 my ($self, $symbol) = @_;

015

016 if (exists($self->{bindings}{ $symbol->value })) {
017 return $self->{bindings}{ $symbol->value };
018 } else {

019 die "no binding for @{[$symbol->valuel} ",
020 "in @{[ref($self)]}\n";

021 }

022 }

023

024 1;

3.11.

LISTINGS

3.11.3 PScm/Read.pm

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

package PScm::Read;

use
use
use
use
use

sub

sub

sub

strict;
warnings;
PScm: :Expr;
PScm: : Token;
base qw(PScm) ;

new {
my ($class, $fh) = @_;
bless {
FileHandle => $fh,
Line => 7
}, $class;

Read {
my ($self) = @_;

my $token = $self-> next_token();
return undef unless defined $token;

return $token unless $token->is_open_token;
my Q@res = O;

while (1) {
$token = $self->Read;
die "unexpected EOF"
if !defined $token;
last if $token->is_close_token;
push Qres, $token;

}

return new PScm::Expr::List(@res);

_next_token {
my ($self) = @_;

while (!$self->{Line}) {
$self->{Line} = $self->{FileHandle}->getline();
return undef unless defined $self->{Line};
$self->{Line} =~ s/"\s+//s;

}

for ($self->{Line}) {
s/"\(\s*// && return PScm::Token: :0pen->new();
s/"\)\s*// && return PScm::Token: :Close->new();
s/7 ([-+]17\d+)\s*//
&& return PScm: :Expr::Number->new($1);

37

38 CHAPTER 3. INTERPRETER VERSION 0.0.0

052 s/7" (7 (2NN (LTI *)"\s*// && do {
053 my $string = $1;

054 $string =" s/\\//g;

055 return PScm: :Expr::String->new($string);
056 ;

057 s/7 (" \s\(\)1+H)\s*//

058 && return PScm: :Expr::Symbol->new($1);
059 }

060 die "can’t parse: $self->{Line}";

061 }

062

063 1;

3.11. LISTINGS

3.11.4 PScm/Token.pm

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

package PScm::Token;
use strict;
use warnings;

use base qw(PScm);

sub is_open_token { 0 }
sub is_close_token { 0O }

HHHHRHHEHEBRHEREREEE
package PScm: :Token: :0pen;

use base qw(PScm::Token) ;
sub is_open_token { 1 }

HHHHFR AR
package PScm::Token::Close;

use base qw(PScm::Token);
sub is_close_token { 1 }

1;

39

40 CHAPTER 3. INTERPRETER VERSION 0.0.0

3.11.5 PScm/Primitive.pm

001 package PScm::Primitive;
002

003 use strict;

004 use warnings;

005 use base qw(PScm::Expr);

006

007 sub Apply {

008 my ($self, $form) = @_;

009

010 my Qunevaluated._args = $form->value;

011 my Qevaluated args = map { $_->Eval() } Qunevaluated args;
012 return $self->_apply(@evaluated_args);

013 }

014

015 sub _check_type {

016 my ($self, $thing, $type) = @_;

017

018 die "wrong type argument(", ref($thing), ") to ", ref($self),
019 "\n"

020 unless $thing->isa($type);

021 }

022

023 FHHHH#HIHH I
024 package PScm::Primitive::Multiply;

025

026 use base qw(PScm::Primitive);

027

028 sub _apply {

029 my ($self, Qargs) = @_;

030

031 my $result = PScm::Expr::Number->new(1l)->value();
032

033 while (@args) {

034 my $arg = shift Qargs;

035 $self->_check type($arg, ’PScm::Expr::Number’);
036 $result *= $arg->value;

037 }

038

039 return new PScm: :Expr::Number ($result) ;

040 }

041

042 H#HHHFHHHFHHHHHHHHHHH AR H AR H
043 package PScm::Primitive::Subtract;

044

045 use base qw(PScm::Primitive);

046

047 sub _apply {

048 my ($self, Qargs) = Q_;

049

050 unshift Qargs, PScm::Expr::Number->new(0) if Qargs < 2;

051

3.11. LISTINGS

052 my $arg = shift Qargs;

053 $self-> check type($arg, ’PScm::Expr::Number’);
054

055 my $result = $arg->value;

056

057 while (@args) {

058 $arg = shift Qargs;

059 $self->_check _type($arg, ’PScm::Expr::Number’);
060 $result -= $arg->value;

061 }

062

063 return new PScm: :Expr::Number ($result) ;

064 }

065

066 1;

42

CHAPTER 3. INTERPRETER VERSION 0.0.0

3.11.6 PScm/SpecialForm.pm

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

package PScm: :SpecialForm;
use strict;
use warnings;

use base qw(PScm::Expr) ;

I R
package PScm::SpecialForm::If;

use base qw(PScm::SpecialForm);

sub Apply {
my ($self, $form) = Q@_;
my ($condition, $true branch, $false_branch) = $form->value;
if ($condition->Eval()->isTrue) {
return $true_branch->Eval();
} else {
return $false_branch->Eval();
}
}

3.11. LISTINGS

3.11.7 PScm/Expr.pm

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

package PScm: :Expr;
use strict;
use warnings;

use base qw(PScm::Token);

sub isTrue {

my ($self) = @_;
scalar ($self->value);
}
sub Eval {
my ($self) = @_;
return $self;
}

sub value { $_[0] }
HERHHHHHH R
package PScm: :Expr::Atom;
use base qw(PScm::Expr);
sub new {

my ($class, $value) = Q@_;
bless \$value, $class;

}
sub value { ${ $_[0] } }

sub as_string { $_[0]->value }
IR R R
package PScm: :Expr::List;

use base qw(PScm::Expr);

sub new {
my ($class, @list) = @_;

$class = ref($class) || $class;
bless [@list], $class;

sub value { ©{ $_[0] } }

sub first { $_[0][0] }

sub rest {
my ($self) = @_;

my @value = $self->value;
shift @value;

43

44 CHAPTER 3. INTERPRETER VERSION 0.0.0

052 return $self->new(@value);

053 }

054

055 sub as_string {

056 my ($self) = @_;

057 return ’(’

058 . join(’ ’, map { $_.->as_string } $self->value)
059 D R

060 }

061

062 sub Eval {

063 my ($self) = @_;

064 my $op = $self->first(O->Eval();
065 return $op->Apply($self->rest);
066 }

067

068 HHH##HHIHHHHIHHHHIFHHIHHHHHHH
069 package PScm: :Expr::Symbol;
070 use base qw(PScm::Expr::Atom);

071

072 sub Eval {

073 my ($self) = @_;

074 return $PScm: :GlobalEnv->LookUp($self) ;
075 }

076

077 HHHHHHFHHARHHBHFHHARHHERHHHH

078 package PScm: :Expr::Literal;

079 use base qw(PScm::Expr::Atom);
080

081 ##HH#HHHHHHHHHHHHHHBHARHHHH

082 package PScm::Expr: :Number;

083 use base qw(PScm::Expr::Literal);

084

085 use Math::Biglnt;

086

087 sub new {

088 my ($class, $value) = Q_;

089 $value = new Math::BigInt($value) unless ref ($value);
090 $class->SUPER: :new($value) ;

091 }

092

093 #H#HHH#HHBHFHHAHHHEHHH BRI HHH
094 package PScm::Expr::String;
095 use base qw(PScm::Expr::Literal);

096

097 sub as_string {

098 my ($self) = @_;

099

100 my $copy = $self->value;

101 $copy =" s/\\/\\\\/sg;
102 $copy =" s/"/\\"/sg;
103 return qq’"$copy"’;

3.11.

104 }
105
106 1;

LISTINGS

45

46

3.11.8 t/PScm.t

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023

J Ilhello" J ,

CHAPTER 3. INTERPRETER VERSION 0.0.0

’numbers’) ;

’explicit positive numbers’);
’negative numbers’);
’strings’);
’multiplication’);
’subtraction’);

’negation’);

’simple conditional’);

’no overflow’);

use strict;

use warnings;

use Test::More;

use 1lib ’./t/1lib’;

use PScm::Test tests => 10;

BEGIN { use_ok(’PScm’) }

eval ok(’1’, 17,
eval ok(’+17, 17,
eval_ok(’-17, -1,
eval_ok(’"hello"’,

eval_ok(’(x 2 3 4)’, 2247
eval ok(’(- 10 2 3)7, ’57,
eval_ok(’ (- 10)’, ’-10°,
eval ok(’(if (x 0 1) 10 20)’, ’20°’,
eval_ok (<<EOT, <<EOR,
(* 1234567890987654321 1234567890987654321)
EOT
1524157877457704723228166437789971041
EOR

vim: ft=perl

3.11.

LISTINGS

3.11.9 t/1ib/PScm/Test.pm

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048

package PScm::Test;

use
use
use

strict;
warnings;
FileHandle;

require Exporter;

our
our

@ISA = qw(Exporter);
O@EXPORT = qw(eval_ok evaluate);

my $Test = Test::Builder->new;

sub

sub

sub

import {

my ($self) = shift;

my $pack = caller;
$Test->exported_to($pack) ;
$Test->plan(Q.);

$self->export_to_level (1, $self, ’eval ok’);
$self->export_to_level(l, $self, ’evaluate’);

eval_ok {

my ($expr, $expected, $name) = @_;

my $result = evaluate($expr);

$result .= "\n" if $expected =~ /\n/;
$Test->is_eq($result, $expected, $name);

evaluate {
my ($expression) = @_;

my $fh = new FileHandle("> junk");
$fh->print ($expression);

$fh = new FileHandle(’< junk’);
my $outfh = new FileHandle("> junk2");
PScm: :ReadEvalPrint ($£fh, $outfh);
$fh = 0;

$outfh = 0;

my $res = ‘cat junk2‘;

chomp $res;

unlink(’junk’);

unlink(’ junk2’);

warn "# [$res]\n";
return $res;

48 CHAPTER 3. INTERPRETER VERSION 0.0.0

3.11.10 t/interactive

001 use PScm;

002

003 package GetLine;

004

005 use Term::ReadLine;

006

007 sub new {

008 my ($class) = @_;
009 bless {

010 term => new Term::ReadLine(’PScheme’),
011 }, $class;

012 }

013

014 sub getline {

015 my ($self) = @_;
016 $self->{term}->readline(’> ’);
017 }

018

019 package main;

020

021 my $in = new GetLine();
022

023 ReadEvalPrint($in);

024

025 # vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.0.0.tgz

Chapter 4

Implementing let

let allows the extension of the environment, temporarily, to include new bindings of symbols to data.
let was introduced in Section 2.6 on page 12 but as a quick reminder, here it is in action:

> (let ((x 10)

> (y 20))
> (*x x y))
200
> x

Error: no binding for x in PScm::Env

Of course the Environment that has been described so far is not extensible, so the first thing to do is to
look at how we might change the environment package to allow extension.

4.1 The Environment

Remember the original environment implementation from Section 3.2 on page 16, where we just created
an object wrapper around a Perl hash? We can build on this idea, but we need to think a bit harder
about what environment extension actually means. It would be a good idea to keep the environment
extensions separate from what is already in the environment, so that they can be easily undone when
the time comes. It’s a really Bad Idea to just poke more key-value pairs into that hash; the cost of
working out how to undo those changes could be prohibitive. Therefore, each extension should have its
own object hash.

A useful distinction to make at this point is between any individual hash, and the environment as a
whole. When the text refers to the environment as a whole It’ll just say “the environment”, but when
It’s talking about a particular object hash component, It’ll say “environment frame”, or just “frame”.

4.1.1 A Stack-based Environment

A simple extension then, and one which a number of programming languages do in fact implement, is
a stack of environment frames. A new frame containing the new bindings is pushed on top of the old,
and the LookUp () method starts at the top of the stack and works its way down until it either finds a
binding for the argument symbol, or hits the bottom of the stack and signals an error. To restore the
previous environment, the top frame is simply popped off the stack again.

49

50 CHAPTER 4. IMPLEMENTING LET

Perl lists have push and pop operations, so we could easily use those with a simple array representing
the stack. Alternatively we could keep a current “top of stack” index, and increment that to push, or
decrement it to pop, something like:

sub push {
my ($self, $frame) = @_;
$self->{stack}[$self->{index}] = $frame;
++$self->{index};

sub pop {
my ($self) = @_;
--$self->{index};
die "stack underflow" if $self->{index} < 0;
return $self->{stack}[$self->{index}];

This has the minor advantage of not immediately loosing what was previously on the top of the stack
after a pop().

The major drawback of a stack is that it is a linear structure, and extending the stack again necessarily
obliterates what was previously there, see Figure 4.1. If we plan at a later stage to support closure, where
functions hang on to their environments after control has left them, then a stack is obviously inadequate
unless some potentially complex additional code protects and copies those vunerable environment frames.

Figure 4.1: Stacks Destroy Old Environment Frames

§r0v§/ s:hrinfk gjrov?

: | [Frame2 | | | | | [Frame3
Frame1 | | [Frame1 | y | Frame1 | | [Frame1

4.1.2 A Linked List Environment

Enter the linked list. A linked list is just a collection of objects, hashes or whatever, where each one
contains a reference to the previous one on the list. If an environment, rather than being a stack of
frames, was a linked list of frames, then just as with a stack, PScm: :Env: :LookUp() need only walk
through the chain until it finds the first (most local) occurrence of the symbol and return that. The
advantages of a linked list are that many environment frames can share the same parent, and therefore
creating a new extension frame does not destroy the previous extension, see Figure 4.2 on the next page.
As long as something continues to hold a reference to the old Frame2 in this figure, then it will not be
garbage collected and remains as valid as any other environment.
Here’s PScm: :Env: : LookUp () modified to use a linked list.

4.1. THE ENVIRONMENT o1

Figure 4.2: Linked Lists Don’t Destroy Old Environment Frames

grow shrink grow
| Frame2 | [Frame2] [Frame2] | Frame3 |

Frame1 | | [Frame1 | y [Frame1 | [Framet |
025 sub LookUp {
026 my ($self, $symbol) = @_;
027
028 if (exists($self->{bindings}{ $symbol->value })) {
029 return $self->{bindings}{ $symbol->value };
030 } elsif ($self->{parent}) {
031 return $self->{parent}->LookUp($symbol);
032 } else {
033 die "no binding for @{[$symbol->valuel} ",
034 "in @{[ref($self)]}\n";
035 }
036 }

The only change is on Lines 30-31 (in bold) where if LookUp() can’t find the symbol in the current
environment frame it looks in its parent frame, if it has one.

The PScm: :Env: :new() method is little changed, it additionally checks the argument class in case
new() is being called as an object method (which it will be), and adds a parent field to the object, with
an initial zero value meaning “no parent”.

007 sub new {

008 my ($class, %bindings) = @_;

009

010 $class = ref($class) || $class;

011 bless { bindings => {%bindings}, parent => 0 }, $class;
012 }

Finally we need an Extend () method of PScm::Env that will create a new environment from an existing
one by creating a new frame with the new bindings, and setting the new frame’s parent to be the original
environment.

014 sub Extend {

015 my ($self, $ra_symbols, $ra_values) = Q@_;
016
017 my %bindings = ();

018 my Onames map { $_->value } @$ra_symbols;
019 @bindings{@names} = map { $_->Eval($self) } @$ra_values;
020 my $new = $self->new()bindings);

52 CHAPTER 4. IMPLEMENTING LET

021 $new->{parent} = $self;
022 return $new;
023 }

Because the Extend () method will be used by let and other constructs later, it takes a reference to an
array of symbols and a reference to an array of values, rather than the simple %initial hash that new()
takes. On Line 18 It maps the symbols to a list of strings, then on Line 19 it uses those strings as keys
in a hash mapping them to their equivalent values. On Line 20, creates a new environment with that
hash. Finally on Line 21 it sets that new environment’s parent to be the original environment $self and
returns the new environment.

4.2 Global Environments have a Problem

Before proceeding to implement let, we need to address an incipient problem with the global environ-
ment.

To understand this, assume our interpreter already has let installed as PScm::SpecialForm::Let,
and is about to evaluate the (+ a b) part of the expression

(let ((a 10)
(b 20))
(+ a b))

It will have already extended the environment with the bindings for a and b so the global environment
at that point will look like Figure 4.3.

Figure 4.3: Environment during evaluation of example “let”

PScm::Env

"a" .——»[PScm::Expr::Number 10]
"b" .——»[PScm::Expr::Number 20]
parent

PScm::Env

"let" .——»[PScm::SpecialForm::Let]
"if" .——»[PScm::SpecialForm::If]
"k .——»[PScm::Primitive::Multiply]
- .——»[PScm::Primitive::Subtract]

Now, consider what let might have had to do to extend the environment and might have to do to restore
it again afterwards:

4.3. ENVIRONMENT PASSING 93

1. Save the current value of $PScm: :GlobalEnv;

2. Call Extend () on $PScm: :GlobalEnv to get a new one with a and b appropriately bound;
3. Assign that new environment to $PScm: :GlobalEnv;

4. Call Eval () on the expression (+ a b) and save the result;

5. Restore the previous value of $PScm: : GlobalEnv;

6. Return the result of evaluating the body.

There’s something not quite right there, something ugly. We’ve made it the responsibility of let to
restore that previous environment, and if we go down that road, all of the other operations that extend
environments will similarly be required to restore the environment for their callers. There’s another bit
of ugliness too, the simple existence of a global variable. It’s the only one in our application. Does it
have to be there? What could replace it?

4.3 Environment Passing

You are asked to take a leap of faith here when it is suggested that a better mechanism is to pass the
environment around between Eval() and Apply() within the interpreter. Just suppose that Eval() was
given the current environment as argument along with the expression to evaluate. Furthermore suppose
that it passed the environment to Apply (). Now we’ve already seen that Special Forms (of which let is
one,) each have their own Apply () method, so how would let’s Apply () look if the environment were
passed in? It would:

1. Call Extend () on the argument environment to get a new one with a and b appropriately bound;

2. Return the result of calling Eval() on the expression (+ a b) with the new environment as argu-
ment.

Isn’t that better!!

Because environments would be local (my) variables, and because PScm: :Env: :Extend() does not
alter the original environment in any way, we can rely Perl’s own garbage collection take care of old
unwanted environments for us.

The changes to our interpreter to make this happen are in fact quite limited. Fist of all, because
Eval() now expects an environment as argument, the top-level PScm: :ReadEvalPrint () must create
one and pass it in. Note that it is the same as the $PScm: :GlobalEnv from our previous interpreter,
with the addition of a binding for let.

031 sub ReadEvalPrint {

032 my ($infh, $outfh) = @_;

033

034 $outfh | |= new FileHandle(">-");
035 my $reader = new PScm::Read($infh);

'If the improvement to the design of let does not warrant such an apparently drastic change, it should be noted that
closure is much easier to implement with this model and could be egregiously difficult to implement otherwise.

54 CHAPTER 4. IMPLEMENTING LET

036 while (defined(my $expr = $reader->Read)) {

037 my $result = $expr->Eval(

038 new PScm::Env(

039 let => new PScm::SpecialForm::Let(),

040 ’x? => new PScm::Primitive::Multiply(),
041 =2 => new PScm::Primitive::Subtract(),
042 if => new PScm::SpecialForm::If(),

043)

044);

045 $result->Print ($outfh) ;

046 }

047 }

Now you should remember from Section 3.5 on page 25 that there are three implementations of Eval(),
one in PScm::Expr, one in PScm::Expr::Symbol and one in PScm::Expr::List. Each of these must
deal with the extra environment argument they are now being passed.

The default Eval () method for literal atoms (strings, numbers and others) is functionally unchanged.
It ignores any argument environment because literals evaluate to themselves.

012 sub Eval {

013 my ($self, $env) = O_;
014 return $self;
015 }

The Eval () method for symbols now uses the argument environment rather than a global one in which
to lookup its value:

069 package PScm: :Expr::Symbol;
070 use base qw(PScm: :Expr::Atom);

071
o72 sub Eval {

073 my ($self, $env) = Q_;

074 return $env->LookUp($self);
o075}

The Eval () method for lists (expressions) is little changed either, it evaluates the operation in the current
(argument) environment then calls the operation’s Apply () method, passing the current environment as
an additional argument.

062 sub Eval {

063 my ($self, $env) = Q@_;

064 my $op = $self->first()->Eval($env);
065 return $op->Apply($self->rest, $env);
066 }

So Apply () must change too. As shown earlier, There is one Apply () method for all PScm::Primitive
classes, which evaluates all of the arguments to the primitive operation then calls the operation’s pri-
vate _apply () method with its pre-evaluated arguments. That needs to change only to evaluate those
arguments in the argument environment:

4.4. LET ITSELF 95

007 sub Apply {

008 my ($self, $form, $env) = @_;
009
010 my Qunevaluated_args = $form->value;
011 my G@evaluated_args = map { $_->Eval($env) } Qunevaluated_args;
012 return $self->_apply(@evaluated_args);
013
}

Note particularly that there is no need to pass the environment to the private _apply () method: since all
its arguments are already evaluated it has no need of an environment to evaluate anything in. Therefore
the primitive multiply and subtract operations are unchanged from the previous version of the interpreter.
The Apply () method for special forms is separately implemented by each special form. In our previous
interpreter there was only one special form: if, so let’s take a look at how that has changed.

028 package PScm::SpecialForm::If;

029

030 use base qw(PScm::SpecialForm) ;

031

032 sub Apply {

033 my ($self, $form, $env) = Q_;

034

035 my ($condition, $true_branch, $false_branch) = $form->value;
036

037 if ($condition->Eval($env)->isTrue) {
038 return $true_branch->Eval($env);
039 } else {

040 return $false_branch->Eval ($env) ;
041 }

042 }

043

044 1;

Pretty simple, The only change is that PScm: :SpecialForm: :If: :Apply () passes its additional argu-
ment $env to each call to Eval().

4.4 1let Itself

Now we’re done, we can look at that implementation of PScm: :SpecialForm::Let: :Apply() in our
environment passing interpreter.
Remember that 1et has the general form:

(let ((binding) ...) (expression))
where (binding) is:
({symbol) (expression))

So, with that in mind, here’s the Apply () method.

56 CHAPTER 4. IMPLEMENTING LET

oos package PScm::SpecialForm::Let;

009
010 use base qw(PScm::SpecialForm);
011
012 sub Apply {
013 my ($self, $form, $env) = @_;
014
015 my ($bindings, $body) = $form->value;
016 my (@symbols, @values);
017
018 foreach my $binding ($bindings->value) {
019 my ($symbol, $value) = $binding->value;
020 push @symbols, $symbol;
021 push @values, $value;
022 }
023
024 return $body->Eval ($env->Extend (\@symbols, \@values));
025
}

It starts off at Line 15 extracting the bindings and body from the argument form. Then it sets up two
empty lists to collect the symbols and the values (Line 16) separately. Then in the loop on Lines 18-22
it iterates over each binding collecting the unevaluated symbol in one list and the evaluated argument
in the other. Finally on Line 24 it calls the body’s Eval() method with an extended environment where
those symbols are bound to those values.

Line 24 encapsulates our new simple definition for let quite concisely. The environment created by
Extend () is passed directly to Eval() and the result of calling Eval() is returned directly.

4.5 Summary

In order to get let working easily we had to make two changes to the original implementation. Firstly
adding an Extend method to the PScm::Env class to create new environments, and secondly altering
the various Eval() and Apply() methods to pass the environment as argument rather than using a
global environment. Having done that, the actual implementation of let was trivial.

4.6 Tests

Rather than adding more tests to t/PScm.t, There’s a new t/PScm_Let.t which you can see in List-
ing 4.7.1 on the facing page. It adds two tests, the first just tests that a value bound by a let expression
is available in the body of the let, and the second proves that the body of the let can be an arbitrary
expression.

4.7. LISTINGS

4.7 Listings

4.7.1 t/PScm Let.t

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018

use strict;

use warnings;

use Test::More;

use lib ’./t/1ib’;

use PScm::Test tests => 3;

BEGIN { use_ok(’PScm’) }
eval ok(’(let ((x 2)) x)’, ’2’, ’simple let’);

eval_ok(<<EOF, ’20’, ’conditional evaluation’);
(let ((a 00)

(b 10)
(c 20))
(if a b ¢))
EQOF
vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.0.1.tgz

58

CHAPTER 4. IMPLEMENTING LET

Chapter 5

Implementing lambda

Having derived an environment passing interpreter in version 0.0.1, the addition of functions, specifically
closures, becomes much more tractable.

So far the text has been pretty relaxed about the uses of the words function and closure, which is ok
because in PScheme and Perl all functions are in fact closures. But before we go any further we’d better
have a clearer definition of what a closure is, and what the difference between a function and a closure
might be.

First of all what precisely is a function? On consideration, functions are a lot like let expressions:
they both extend an environment then execute an expression in the extension. A let expression extends
an environment with key-value pairs, then evaluates its body in that new environment. A function
extends an environment by binding its formal arguments to its actual arguments! then evaluates its
body in that new environment. For example, assuming the definition:

(define square (lambda (x) (* x x)))
then while executing the expression:
(square 4)

the global environment would be extended with a binding of x to 4, and the body of the function, (* x
x) would be evaluated in that new environment, as in Figure 5.1 on the next page.

Now, a closure is simply a function that when executed will extend the environment that was current at
the time the closure was created. Consider an example we’ve seen before.

> (define times2

> (let ((n 2))

> (lambda (x) (* n x))))
times2

> (times2 4)

8

The lambda expression is being executed in an environment where n is bound to 2. The result of that
lambda expression, a closure, is also the result of the let expression and therefore gets bound to the
symbol times2 in the global environment.

!Formal arguments are the names that a function gives to its arguments. Actual arguments are the values passed to a
function.

99

60 CHAPTER 5. IMPLEMENTING LAMBDA

Figure 5.1: Functions extend an environment just like let does

(* x x)
Env2

x 4

R

(square 4)
4 Envi

let
lambda
if

square

Now when times?2 is called, the closure body (* n x) must execute in an environment where n is
still bound to 2, as in Figure 5.2.

Figure 5.2: Closures extend the lexical environment

o |I===III|

(lambda (x) (*))
am a X n x Env2

(times2 4)

times2
N ——

So referring to that figure: let extended the global environment to Env2 with a binding of n to 2. Then
the closure, when it was created by lambda in Env2, must have somehow held on to, or “captured” Env2,
so that when the closure is later executed Env2 is the one that it extends to Env3 with its own argument
X.

5.1. LAMBDA 61

A function which is not a closure would have to pick a different environment to extend. It could
choose the environment it is being executed in but that would cause horrendous confusion: any variables
referred to in the function body that were not declared by the function might pick up values randomly
from the callers environment. Alternatively it could extend the global environment. The latter choice
is the standard one for non-closure implementations, but as already noted all functions in PScheme are
closures (and there are no advantages to them not being closures) so we don’t have to worry about that.

So we’re going to continue to use the words function and closure pretty much interchangeably, but
when we use the word function we’re emphasizing the functional aspects of the object under discussion,
and when we use the word closure, we're emphasizing its environmental behaviour.

When considering the actual implementation of closures (functions) there are two parts to the story.
The first part is how lambda creates a closure, and the second is how the closure gets evaluated when it
is called. In the next section we’ll look at the first part, how lambda creates a closure.

5.1 1lambda

We need a good, simple example of closures in action. The following example fits our purposes, but is a
bit more complicated than the examples we’ve seen so far:

> (let ((a 4)

> (times2

> (let ((n 2))

> (lambda (x)

> (* xn)))))
> (times2 a))

8

This example is not much different from our earlier times2 example, except that an outer let provides
bindings for both times2 and a variable a that will be argument to times2. It is however just a little
tricky, so in detail:

e The outer let reads: “let a be 4 and times2 be the result of evaluating the inner let in the
expression (times2 a).”

e The inner let reads “let n be 2 in the expression (lambda ...).”

e The value of that inner let is the result of evaluating that lambda expression and thus a closure,
and that is what gets bound to the symbol times2 by the outer let.

e When (times2 a) is evaluated, the closure bound to times2 can still “see” the variable n from
the environment that was current when it was created, and so the body of the closure, (* x n),
wilth x bound to 4 and n bound to 2, produces the expected result 8.

Just to be absolutely sure that semantics of that expression are well understood, here is an equivalent in
Perl:

{
my $a = 4;
my $times2 = do {

62 CHAPTER 5. IMPLEMENTING LAMBDA

my $n = 2;

sub {
my ($x) = @_;
$x * $n;

}
}s
$times2->($a);

}

Now we’re going to walk through the execution of the PScheme statement in a lot more detail, considering
what the interpreter is actually doing to produce the final result.

The very first thing that happens when evaluating our PScheme example is that the outer let
evaluates the number 4 in the global environment. It does not yet bind that value to a, it first must
evaluate the expression that will be bound to times2.

> (let ((a 4)

> (times?2

> (let ((n 2))

> (lambda (x)

> (x x n)))))
> (times2 a))

8

The next thing that happens is the outer let initiates the evaluation of the inner let. The inner let
extends the global environment with a binding of n to 2, as hilighted in the following code and shown in
Figure 5.3 on the next page.

> (let ((a 4)

> (times2

> (let ((n 2))

> (lambda (x)

> (x x n)))))
> (times2 a))

8

Then, in that new environment, labelled Env2, the 1let evaluates the lambda expression:

> (let ((a 4)

> (times2

> (let ((n 2))

> (lambda (x)

> (* x n)))))
> (times2 a))

8

Evaluating a lambda expression is just the same as evaluating any other list expression, its (unevaluated)
arguments are passed to its Apply() method, along with the current environment. In our example the
arguments to the lambda’s Apply () would be:

5.1. LAMBDA 63

Figure 5.3: let binds n to 2

| creates
(let ((a 4) !
(times?2 Env1
(let ((n 2))
(lambda (x) let
. (* % n))))) Lambda
(times2 a))

if

1. A list of the unevaluated arguments containing

(a) the formal arguments to the function: (x)

(b) the body of the function: (* x n)

2. the current environment, Env2 that the let just created, with a binding of n to 2.

To start to make this happen we first need to add a new subclass of PScm::SpecialForm, rather
unsurprisingly called PScm::SpecialForm::Lambda, and we need to add a binding from the symbol
lambda to an object of that class in the initial environment. Firstly, here’s ReadEvalPrint () with the
additional binding;:

031 sub ReadEvalPrint {

032 my ($infh, $outfh) = @_;

033

034 $outfh ||= new FileHandle(">-");

035 my $reader = new PScm::Read($infh);

036 while (defined(my $expr = $reader->Read)) {

037 my $result = $expr->Eval(

038 new PScm: :Env(

039 let => new PScm::SpecialForm::Let(),

040 2% => new PScm::Primitive::Multiply(),
041 12 => new PScm: :Primitive::Subtract(),
042 if => new PScm::SpecialForm::If(),

043 lambda => new PScm::SpecialForm: :Lambda(),
044)

045);

046 $result->Print ($outfh);

047 }

048 }

64 CHAPTER 5. IMPLEMENTING LAMBDA

The only change is the addition of Line 43 with the new binding for lambda.

Now we can look at that new package PScm::SpecialForm::Lambda. All its Apply () method has
to do is to store the details of the function definition and the current environment in another new type
of object representing the closure:

045 package PScm::SpecialForm: :Lambda;
046

047 use base qw(PScm::SpecialForm);

048 use PScm::Closure;

049

050 sub Apply {

051 my ($self, $form, $env) = @_;

052

053 my ($args, $body) = $form->value;
054 return PScm::Closure: :Function->new($args, $body, $env);
055 }

056

057 1;

On Line 53 it unpacks the formal arguments (i.e. (x)) and body ((* x n)) of its argument $form (the
arguments to the lambda expression) and on Line 54 it returns a new PScm::Closure::Function object
containing those values and, most importantly, also containing the current environment (Env2 in our
example.)

That PScm: :Closure: :Function: :new() method (actually in PScm::Closure) does no more than
bundle its arguments:

007 sub new {

008 my ($class, $args, $body, $env) = @_;
009

010 bless {

011 args => $args,

012 body => $body,

013 env => $env,

014 }, $class;

015 }

So in our example it is Env2 that is captured, along with the arguments and body of the function, in
the resulting closure. This is shown in Figure 5.4 on the facing page.

As we’ve noted, the value of the inner let expression is that new Closure object, and next the outer
let recieves the value of the inner let, and extends the global environment with a binding of times2 to
that. It also binds a to 4:

> (let ((a 4)

> (times?2

> (let ((n 2))

> (lambda (x)

> (* x n)))))
> (times2 a))

8

5.1. LAMBDA

Figure 5.4: Closure Captures the Local Environment

Closure

(x)

(* x n)

args
body

env

creates
~

v
\
\

(let ((a'4)
(times2

|

/

(let ((n 2))
(lambda (x)
(* x n)))))
(times2 a))

creates -

(let ((a 4)
(times2
(let ((n 2))
(lambda (x)
(* x n)))))
(times2 a))

Envi

let
lambda
if

The resulting environment is labelled Env3 in Figure 5.5.

Figure 5.5: let binds times2 and a

Env3
creates

Closure
a 4
times2 @— (x)

(* x n)

args
body

env

(let "((a 4)
(times?2
(let ((n 2))
(lambda (x)
(* x n)))))

(times2 a))

N
creates

N
N
N

creates
(let ((a'4)
(times2
(let ((n 2)
(lambda (
(* x n
(times2 a))

(let ((a 4)
(times2
(let ((n 2))
(lambda (x)
(* x n)))))
(times2 a))

Env1

)
))))

let
lambda
if

)
x
)

Now at this point the only thing hanging on to the old Env2, where n has a value, is that Closure, and
the only thing hanging on to the Closure is the binding for times2 in Env3 (the code for the Apply ()
method of the outer let is currently holding on to Env3.)

Having created Env3, the outer let evaluates its body, (times2 a) in that environment.

66 CHAPTER 5. IMPLEMENTING LAMBDA

> (let ((a 4)

> (times?2

> (let ((n 2))

> (lambda (x)

> (* x n)))))
> (times2 a))

8

That brings us to the second part of our story, how a function (a closure) gets evaluated.

5.2 Evaluating a Closure

To recap, we’ve reached the stage where the subexpression (times2 a) is about to be evaluated. It will
be evaluated in the context of Env3 from Figure 5.5 on the preceding page which the outer 1let has just
set up with a binding of a to 4 and times2 to the closure.

Since (times2 a) is a list, the Eval () method for lists comes in to play again. It evaluates the first
component of the list, the symbol times2, in the context of Env3 resulting in the Closure. Then it passes
the rest of the form (a list containing the symbol a) unevaluated, along with the current environment
Env3, to the closure’s Apply () method. Closures, being operations, have to have an Apply() method,
and here it is:

043 sub Apply {

044 my ($self, $form, $env) = @_;
045
046 my G@evaluated_args = map { $_->Eval($env) } $form->value;
047 return $self->_apply(@evaluated_args);
048
}

First of all, on Line 46 it evaluates each component of the form (each argument to the function) with
map, passing the argument $env (Env3) to each call to Eval(). After all, closures are functions, and
functions take their arguments evaluated.

At Line 47 our closure’s Apply () returns the result of calling a separate _apply() method on those
evaluated arguments, much as primitive operations do. Note particularily that it does not pass its
argument $env to the private _apply () method.

The private _apply () method is in the parent PScm::Closure class?:

02t sub _apply {

022 my ($self, Qargs) = Q_;
023
024 my $extended_env =
025 $self->env->ExtendUnevaluated([$self->args], [Qargs]);
026 return $self->body->Eval ($extended_env) ;
027
}

This _apply () method does not need an argument environment because the correct environment to
extend is the one that was captured when the the closure object was created. On Line 24 It extends that

Why? Because a later version of the interpreter will support more than one type of closure.

5.2. EVALUATING A CLOSURE 67

previously captured environment with bindings from its formal arguments, also collected when the closure
object was created (i.e. x), to the actual arguments it was passed (i.e. 4, already evaluated). Because the
arguments are already evaluated, it must call a new variant of PScm: :Env: :Extend() called Extend-
Unevaluated (), which does just that. Lastly _apply () evaluates its body (the body of the function, (*
x n)) passing that extended environment as argument and returns the result (Line 26).

Returning to our example, we're still considering the evaluation of the subexpression (times2 a).
As we've said the closure’s Apply () method evaluates its argument a in the environment it was passed,
Env3, resulting in 4. But it is the captured environment, Env2, that the closure extends with a binding
of x to 4, resulting in Env4 (Figure 5.6). It is in Env4, with x bound to 4 and n still bound to 2, that
the closure executes the body of the function (* x n).

Figure 5.6: Closure Extends Captured Env

)
) . . (let ((a 4)
// AN (times2
K . (let ((n 2))
,/ sgreates (lambda (%)
S (4) .. - (* x n)))))
(let ((a 4) ’ S P (times2 a))
(times2 Env3 kel
(let ((n 2)) Closure | LT - creates
(lambda (x) a 4 g
(* x n))))) ; (2
: times2 args (x) .
(times2 a)) body (* x n) (let ((a.4)
Z' Env2 (times?2
’ env (let ((n 2))
— n 2 (lambda (x)
— (* x n)))))
—
: . (times2 a))
creates ’
. @ creates
(let ((a 4) (let (a4 -~ M
(times2 Env1 (times2
(let ((n 2)) (let ((n 2))
(lambda (x) let (lambda (x)
. (* xn))))) lambda . (* xn)))))
(times2 a)) (times2 a))
if
*
—

Figure 5.6 pretty much tells the whole story. Here’s our example one last time so it can be walked
through referring to the figure:

(let ((a 4)
(times2
(let ((n 2))
(lambda (x)

(*x x n)))))
(times2 a))

e At (1) in the figure, the inner let extends the global env Envl with a binding of n to 2 producing
Env2.

68 CHAPTER 5. IMPLEMENTING LAMBDA

e At (2) the inner let then evaluates the lambda expression in the context of Env2, creating a Closure
that captures Env2.

e At (3), the outer let extends the global environment Envl with bindings of a to 4 and times2 to
the value of the inner let: the Closure.

o At (4) the outer let evaluates the subexpression (times2 a) in the context of Env3. In this
environment times2 evaluates to the closure, and its Apply () evaluates a in the same environment
Env3 where it evaluates to 4.

e Finally, at (5), the closure extends the originally captured environment Env2 with a binding of x
to 4 producing Env4 and evaluates its body, (* x n), in this environment.

5.3 Printing a Closure

It would be nice if, when given a closure to print, PScheme could produce something a bit more informa-
tive than the unhelpful “PScm: :Closure: :Function” that results from the default as_string() method
in the top-level PScm package. We could instead print a representation of the lambda expression that
created the closure. For example.

> (let ((square

> (lambda (x)
> (* x x))))
> square)

(lambda (x) (x x x))

This is trivially accomplished by overriding the default as_string() method in PScm::Closure. Here’s
that override.

020 sub as_string {

030 my ($self) = @_;

031 return PScm: :Expr::List->new(
032 $self->_symbol,

033 $self->{args},

034 $self->{body}

035)->as_string;

036 }

All it does is to construct a new PScm::Expr::List containing the symbol that constructed the closure
(lambda) the formal arguments to the closure and the body of the closure. It then calls that list’s as_-
string() method and returns the result. The aquisition of the lambda symbol is deferred to a separate
method _symbol () in PScm::Closure::Function (again because later later versions of the interpreter
will have different kinds of closures). Here’s _symbol().

050 sub _symbol {
051 PScm: :Expr: :Symbol->new(’lambda’);
052 }

Job done. Closures, when printed, will now produce a useful representation of the function they perform.

5.4. SUMMARY 69

5.4 Summary

Hopefully the power, flexibility and elegance of an environment-passing interpreter combined with a
linked-list environment implementation is becoming apparent. The enormous advantage over a stack
discipline is that individual environments need not go away just because a particular construct returns.
They can hang around as long as they are needed and garbage collection will remove them when the
time comes. Without further ado then, here’s the full source for our new PScm::Closure package in
Listing 5.6.1 on the next page.

5.5 Tests

You can see the tests for the lambda form in a new file, t/PScm_Lambda.t, in Listing 5.6.2 on page 72.
The first test exercizes the simple creation of a lambda expression, its binding to a symbol, and its
application to arguments. The second works through pretty much exactly the example we've been
working through. The third starts to flex the muscles of our nascent interpreter a little more. It creates
a local makemultiplier function that when called with an argument n will return another function that
will multiply n by its argument. It then binds the result of calling (makemultiplier 3) to times3 and
calls (times3 5), confirming that the result is 15, as expected. Incidentally, this demonstrates that the
environment created by a lambda expression is equally ameanable to capture by a closure.
We could rewrite the body of that last test in Perl as follows:

my $times3 = do {
my $makemultiplier = sub {
my ($n) = @_;
return sub {
my ($x) = @_;
return $n * $x;

¥
4
$makemultiplier->(3);
}s

$times3->(5);

70

5.6 Listings

5.6.1 PScm/Closure.pm

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049

package PScm::Closure;

use
use
use

sub

sub
sub
sub

sub

sub

}

strict;
warnings;
base qw(PScm);

new {

my ($class, $args, $body, $env) = Q_;

bless {
args => $args,
body => $body,
env => $env,
}, $class;

args { $_[0]->{args}->value }
body { $_[0]->{body} }
env { $_[0]->{env} }

-apply {
my ($self, @args) = @_;

my $extended_env =

CHAPTER 5. IMPLEMENTING LAMBDA

$self->env->ExtendUnevaluated([$self->args], [Qargs]);

return $self->body->Eval($extended env);

as_string {

my ($self) = @_;

return PScm: :Expr::List->new(
$self->_symbol,
$self->{args},
$self->{body}

)->as_string;

B T
package PScm::Closure: :Function;

use

sub

base qw(PScm::Closure);

Apply {
my ($self, $form, $env) = Q_;

my Qevaluated args = map { $_->Eval($env)
return $self->_apply(@evaluated args);

} $form->value;

5.6. LISTINGS

050
051
052
053
054

sub _symbol {

}

1;

PScm: :Expr: :Symbol->new(’lambda’) ;

71

72 CHAPTER 5. IMPLEMENTING LAMBDA

5.6.2 +t/PScm_Lambda.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1lib ’./t/1lib’;

005 use PScm::Test tests => 5;
006 use FileHandle;

007

008 BEGIN { use_ok(’PScm’) }
009

010 eval_ok(<<EQF, ’16’, ’lambda’);
011 (let ((square

012 (lambda (x) (* x x))))
013 (square 4))

014 EOF

015

016 eval_ok(<<EQOF, ’(lambda (x) (* x x))’, ’lambda to string’);
017 (let ((square

018 (lambda (x) (* x x))))
019 square)

020 EOF

021

022 eval_ok(<<EQF, ’12’, ’closure’);
023 (let ((times3

024 (let ((n 3))

025 (lambda (x) (* n x)))))
026 (times3 4))

027 EOF

028

029 eval ok(<<EQF, ’15’, ’higher order functions’);
030 (let ((times3

031 (let ((makemultiplier

032 (lambda (n)

033 (lambda (x) (* n x)))))
034 (makemultiplier 3))))

035 (times3 5))

036 EOF

037

038 # vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.0.2.tgz

Chapter 6

Recursion and letrec

Let’s try a little experiment with the interpreter version 0.0.2. We’ll try to use let to define a recursive
function, the perennial factorial function®.

> (let ((factorial

> (lambda (n)

> (if n

> (* n (factorial (- n 1)))
> 1))

> (factorial 3))

Error: no binding for factorial in PScm::Env

It didn’t work. The reason that it didn’t work is obvious, considering how let works.

let evaluates the expression half of its bindings in the enclosing environment, before it binds the
values to the symbols in a new environment, so it is the enclosing environment (the global environment
in this case) that the lambda captures. Now that environment doesn’t have a binding for factorial,
factorial is only visible within the body of the let, so any recursive call to factorial from the body
of the function (closure) is bound to fail.

Putting it another way, let will create a binding for factorial, but only by extending the glob-
al environment after the lambda expression has been evaluated, in the global environment, therefore
capturing the global environment.

So the error is not coming from the call to (factorial 3), it’s coming from the attempted recursive

call to (factorial (- n 1)) inside the body of the factorial definition. The environment diagram in
Figure 6.1 on the next page should help to make that clear.
The 1let evaluates the lambda expression in the initial environment, Envl at (1), so that’s the environment
that gets captured by the Closure. Then the let binds the closure to the symbol factorial in an
extended environment Env2, and that’s where the body of the let, (factorial 3), gets evaluated at
(2). Now after evaluating its argument 3 in Env2, the closure proceeds to extend the environment it
captured, the global environment Envl, with a binding of n to 3 producing Env3. It’s in Env3 that
the body of the factorial function gets evaluated at (3). Now n has a binding in that environment, but
unfortunately factorial doesn’t, so the recursive call fails.

!Factorial(n), often written n!, is n x (n —1) x (n —2) x --- x 1.

73

74 CHAPTER 6. RECURSION AND LETREC

Figure 6.1: Why recursion doesn’t work

3) &)
(factorial (- n 1)) (factorial 3)
Env3 Env2
l n 3 J l factorial J
v

| Closure |

args (n)
body (if n ...

env o

(1)

(let ((factorial Envi
(lambda (n) .. | -V N

6.1 letrec

What we need is a variation of 1et that arranges to evaluate the values for its bindings in an environment
where the bindings are already in place. Essentially the environments would appear as in Figure 6.2.

Figure 6.2: Recursive environments

®)
(factorial (- n 1))
)
(factorial 3)
Env2 Closure
factoriale@ »| args (n)
body (if n ...
env []

(1)
(let ((factorial
(lambda (n) .. Envi

In this figure the closure has been persuaded to capture an environment Env2 containing a binding that
refers back to the closure itself (a circular reference in effect.) In this circumstance any recursive call to
factorial from the body of the closure would work because the closure would have extended Env2 and
its body would execute in a context (Env3) where factorial did have a value.

The special form we’re looking for is called letrec (short for “let recursive”) and it isn’t too tricky,

6.1. LETREC 75

although a bit of a hack. Let’s first remind ourselves how let works.
1. Evaluate the value component of each binding in the current, passed in environment;

2. Create a new environment as an extension of the current one, with those values bound to their
symbols;

3. Evaluate the body of the let in that new environment.
Our variant, letrec, isn’t all that different. What it does is:
1. Create a new extended environment first, with dummy values bound to the symbols;
2. Evaluate the values in that new environment;
3. Assign the values to their symbols in that new environment;
4. Evaluate the body in that new environment.

Obviously if any of the values in a letrec are expressions other than lambda expressions, and they
make reference to other letrec values in the same scope, then there will be problems. Remember that
all lambda does is to capture the current environment along with formal arguments and function body.
It does not immediately evaluate anything in that captured environment. For that reason real letrec
implementations may typically only allow lambda expressions as values. PScheme doesn’t bother making
that check?.

6.1.1 Assignment

To implement letrec then, we first need to add a method to the environment class PScm::Env that
will allow assignment to existing bindings. Here is that method.

059 sub Assign {

060 my ($self, $symbol, $value) = @_;

061

062 if (defined(my $ref = $self->_lookup_ref ($symbol))) {
063 $$ref = $value;

064 } else {

065 die "no binding for @{[$symbol->value]}",

066 " in @{[ref($self)]}\n";

067 }

068 }

Assign() uses a helper function _lookup_ref () to actually do the symbol lookup. If _lookup_ref ()
finds a binding, then Assign() puts the new value in place through the reference that _lookup_ref ()
returns. It is an error if there’s not currently such a symbol in the environment. This makes sense
because it keeps the distinction between variable binding and assignment clear: variable binding creates
a new binding; assignment changes an existing one.

_lookup_ref () is simple enough, it does pretty much what LookUp() does, except it returns a refer-
ence to what it finds, and returns undef, rather than die ()-ing if it doesn’t find a value:

20ne possible way to detect this type of error would be to bind dummy objects to the symbols. These dummy objects
would have an Eval() method that would die() with an informative error message if it was ever called.

76 CHAPTER 6. RECURSION AND LETREC

o070 sub _lookup_ref {

071 my ($self, $symbol) = @_;

072

073 if (exists($self->{bindings}{ $symbol->value })) {
074 return \$self->{bindings}{ $symbol->value };
075 } elsif ($self->{parent}) {

076 return $self->{parent}->_lookup_ref ($symbol);
077 } else {

078 return undef;

079 }

080 }

Incidentally, LookUp () itself has been modified and simplified to make use of it.

048 sub LookUp {

049 my ($self, $symbol) = @_;

050

051 if (defined(my $ref = $self->_lookup_ref ($symbol))) {
052 return $$ref;

053 } else {

054 die "no binding for @{[$symbol->value]}",

055 " in @{[ref($self)]}\n";

056 }

057 }

6.1.2 PSCM::LetRec itself

All that remains to be done is to add a LetRec subclass of PScm::SpecialForm with an Apply ()
method that implements the algorithm we’ve discussed, then add a binding in the initial environment
from “letrec” to an instance of that class.

We can simplify things a bit by subclassing PScm::SpecialForm::Let instead of PScm::
SpecialForm, and factoring common code out of PScm::SpecialForm::Let’s Apply () method in-
to a new UnPack() method in that class. So first here’s the new version of PScm: : SpecialForm: :Let::
Apply O

012 sub Apply {

013 my ($self, $form, $env) = @_;

014

015 my ($ra_symbols, $ra_values, $body) = $self->UnPack($form, $env);
016

017 return $body->Eval ($env->Extend($ra_symbols, $ra_values));

018 }

The common code in PScm: :SpecialForm: :Let: :UnPack() just unpacks the symbols, bindings and
body from the argument $form and returns them:

6.1. LETREC 7

020 sub UnPack {

021 my ($self, $form, $env) = @_;

022

023 my ($bindings, $body) = $form->value;
024 my (@symbols, @values);

025

026 foreach my $binding ($bindings->value) {
027 my ($symbol, $value) = $binding->value;
028 push @symbols, $symbol;

029 push @values, $value;

030 }

031

032 return (\@symbols, \@values, $body);

033 }

Now, our new Apply () in PScm::SpecialForm::LetRec makes use of that same UnPack () method (by
inheriting from PScm::SpecialForm::Let). It differs from the original Apply () only in that it calls the
environment’s ExtendRecursively () method, rather than Extend ().

036 package PScm::SpecialForm: :LetRec;

037

038 use base qw(PScm::SpecialForm: :Let);

039

040 sub Apply {

041 my ($self, $form, $env) = @_;

042

043 my ($ra_symbols, $ra_values, $body) = $self->UnPack($form, $env);
044

045 return $body->Eval(

046 $env->ExtendRecursively($ra_symbols, $ra_values));
047 }

So we need to take a look at that ExtendRecursively () method in PScm::Env.

031 sub ExtendRecursively {

032 my ($self, $ra_symbols, $ra_values) = @_;

033

034 my $newenv = $self->ExtendUnevaluated($ra_symbols, $ra_values);
035 $newenv->_eval_values();

036 return $newenv;

037 }

It creates a new environment by extending the current environment, $self with the symbols bound to
their unevaluated values. Then it calls a new, private method _eval_values() on the new environment.
Here’s that method:

78 CHAPTER 6. RECURSION AND LETREC

039 sub _eval_values {

040 my ($self) = @_;

041 map {

042 $self->{bindings}{$_} =

043 $self->{bindings}{$_}->Eval($self)
044 }

045 keys %{ $self->{bindings} };

046 }

All that does is to loop over all of its bindings, replacing the unevaluated expression with the result of
evaluating the expression in the current environment. Since all of those expressions are expected to be
lambda expressions, the resulting closures capture the environment that they are themselves bound in.
QED.

A careful reader may have realised that a valid alternative implementation of letrec would just
create an empty environment extension, then populate the environment afterwards with an alternative
version of Assign() which did not require the symbols to pre-exist in the environment. The main reason
it is not done that way is that the current behaviour of Assign() is more appropriate for later extensions
to the interpreter.

Just to be complete, here’s the new version of PScm: :ReadEvalPrint () with the binding for letrec.

031 sub ReadEvalPrint {

032 my ($infh, $outfh) = @_;

033

034 $outfh ||= new FileHandle(">-");

035 my $reader = new PScm::Read($infh);

036 while (defined(my $expr = $reader->Read)) {

037 my $result = $expr->Eval(

038 new PScm: :Env(

039 let => new PScm: :SpecialForm::Let(),

040 2% => new PScm::Primitive::Multiply(),
041)= => new PScm::Primitive::Subtract(),
042 if => new PScm::SpecialForm::If(),

043 lambda => new PScm::SpecialForm: :Lambda(),
044 letrec => new PScm::SpecialForm::LetRec(),
045)

046);

047 $result->Print ($outfh);

048 }

049 }

6.2 Summary

Let evaluates the values of its bindings in the enclosing environment. Then it creates an extended
environment with each symbol bound to its value, in which to evaluate the body of the let expression.
This means that recursive lambda expressions defined by let won’t work, because there’s not yet a
binding for the recursive function when the lambda expression is evaluated to create the closure. In

6.3. TESTS 79

order to get recursion to work, we needed to create a variant of let, called letrec (let recursive)
which sets up a dummy environment with stub values for the symbols in which to evaluate the lambda
expressions, so that the lambda expressions could capture that environment in their resulting closures.
Having evaluated those expressions, letrec assigns their values to the existing bindings in the new
environment, replacing the dummy values. Thus when the closure executes later, the environment it
has captured, and which it will extend with its formal arguments bound to actual values, will contain a
reference to the closure itself, so a recursive call is successful.

6.3 Tests

The tests for the letrec form are in t/PScm_Letrec.t which you can see in Listing 6.4.1 on the next
page.

There are three tests. The first two, just prove what we already know, that let does not (and should
not) support recursion. The other new test replaces let with letrec and proves that letrec on the
other hand does support recursive function definitions.

80 CHAPTER 6. RECURSION AND LETREC

6.4 Listings

6.4.1 t/PScm Letrec.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1ib ’./t/1lib’;

005 use PScm::Test tests => 4;

006

007 BEGIN { use_ok(’PScm’) }

008

009 ok (

010 ldefined(eval {

011 evaluate(<<EOF) }), ’let does not support recursion’);
012 (let ((factorial

013 (lambda (n)

014 (if n (* n (factorial (- n 1)))

015 1))

016 (factorial 4))

017 EOF

018

019 is($0@, "no binding for factorial in PScm::Env\n",
020 ’let does not support recursion [2]’);

021

022 eval_ok(<<EQF, "24", ’letrec and recursion’);
023 (letrec ((factorial

024 (lambda (n)

025 (if n (*x n (factorial (- n 1)))
026 1)

027 (factorial 4))

028 EOF

029

030 # vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.0.3.tgz

Chapter 7

Another Variation on let

Suppose we have a fairly complicated calculation to make. We’d like to compute intermediate values in
order to simplify our code. For example:

> (let ((a 5)

> (b (x a 2))
> (c (-Db 3N
> c)

Error: no binding for a in PScm::Env

It didn’t work. The error occurs when attempting to evaluate (* a 2). Why? Well in much the same
way as let fails for recursive definitions: because let binds its arguments in parallel, at the point that
it is trying to evaluate (x a 2), it is still doing so in the environment prior to binding a.

letrec can’t help here, because it sets up an environment with dummy values to evaluate its values
in, which is OK if those values are closures that just capture that environment for later, but very bad if
they’re actually going to try to do any immediate evaluations with those dummy values.

7.1 Sequential Binding

Of course the solution is quite simple even using our existing let form: we just nest the let expressions
so that each value expression gets evaluated in an environment where the previous value is already bound
to its symbol:

> (let ((a 5))

> (let ((b (x a 2)))

> (let ((c (- b 3)))
> c)))

7

That would give us a set of environments as in Figure 7.1 on the following page.

The outer 1let binds a to 5 to create Env2. The next let evaluates (* a 2) in the context of Env2 and
creates Env3 with a binding of b to the result 10. The innermost let evaluates (- b 3) in Env3 and
binds ¢ to the result, creating Env4. In Env4 the final evaluation of ¢ results in 7, which is the result of
the expression.

81

82 CHAPTER 7. ANOTHER VARIATION ON LET

Figure 7.1: Nested environments

Env4

o
2
®
O
=8
@

~-L__ @

o}
~

(let ((c (= b 3))) ...
Env3

o
2
®
O
=8
@

-——__ ®

Env2

o
2
®
O
=8
@

-—e__ ®
»
]

Env1

|

While that works fine, it’s rather ugly and verbose code. Wouldn’t it be better if there was a variant
of let that did all that for us, binding its variables sequentially? This variant of let is called letx*
(let-star) and is found in most lisp implementations.

7.2 let*

To implement let*, in the same way as we implemented letrec, we create a new sub-class of PScm::
SpecialForm::Let and give it an Apply() method, then bind a symbol (let*) to an instance of that
class in the initial environment. Our new class will be called PScm::SpecialForm::LetStar and here’s
that Apply () method.

050 package PScm::SpecialForm: :LetStar;
051
052 use base qw(PScm::SpecialForm: :Let);

053
054 sub Apply {

055 my ($self, $form, $env) = Q@_;

056

057 my ($ra_symbols, $ra_values, $body) = $self->UnPack($form);
058

059 return $body->Eval(

060 $env->ExtendIteratively($ra_symbols, $ra_values));

061 }

7.3. SUMMARY 83

Again it only differs from the let and letrec implementations of Apply () in the way it extends the
environment it passes to the Eval() of its body. In this case it calls the new PScm::Env method
ExtendIteratively().

039 sub ExtendIteratively {

040 my ($self, $ra_symbols, $ra_values) = @_;
041

042 my Qsymbols = @$ra_symbols;

043 my Q@values = @$ra_values;

044 my $newenv = $self;

045

046 while (@symbols) {

047 my $symbol = shift @symbols;

048 my $value = shift Qvalues;

049 $newenv = $newenv->Extend([$symbol], [$valuel);
050 }

051

052 return $newenv;

053 }

This method implements the algorithm we discussed earlier, creating a new environment frame for each
individual binding, and evaluating the value part in the context of the previous environment frame. The
last environment frame, the head of the list of frames rooted in the original environment, is returned by
the method!.

7.3 Summary

This may all seem a bit academic, but let’s remember that Perl supports both types of variable binding,
let and let*, in the following way.
Parallel assignment like 1let is done in a list context:

my ($a2, $p2) = ($a * $a, $b * $b);

Sequential binding like let* is done by sequential assignment:

my $a = 5;
my $b = $a * 2;
my $c = $b - 3;

let has its uses, just as assignment in a list context does. For instance with parallel assignment it
becomes possible to swap the values of variables without needing an additional temporary variable. In
Perl:

(b, $a) = (3a, $b);

and in PScheme:

! An alternative implementation would be to only create one new environment frame, then iteratively evaluate and bind
each value in turn, in the context of that new environment.

84 CHAPTER 7. ANOTHER VARIATION ON LET

(let ((a b)
(b a))
)

Again, just for completeness, here’s our 0.0.4 version of ReadEvalPrint() with the additional let*
binding.

031 sub ReadEvalPrint {

032 my ($infh, $outfh) = @_;

033

034 $outfh ||= new FileHandle(">-");

035 my $reader = new PScm::Read($infh);

036 while (defined(my $expr = $reader->Read)) {

037 my $result = $expr->Eval(

038 new PScm: :Env(

039 let => new PScm::SpecialForm::Let(),

040 %2 => new PScm::Primitive::Multiply(),
041)0 => new PScm: :Primitive::Subtract(),
042 if => new PScm::SpecialForm::If(),

043 lambda => new PScm::SpecialForm::Lambda(),
044 letrec => new PScm::SpecialForm: :LetRec(),
045 ’let*’ => new PScm::SpecialForm::LetStar(),
046)

047);

048 $result->Print ($outfh);

049 }

050 }

7.4 Tests

The additional tests for 0.0.4 are in t/PScm_LetStar.t which you can see in Listing 7.5.1 on the next
page.

The first test proves that ordinary let binds in parallel, by doing the variable swapping trick. The second
test demonstrates let* binding sequentially since the innermost binding of b to a sees the immediately
previous binding of a to the outer b.

7.5. LISTINGS

7.5 Listings

7.5.1 +t/PScm_LetStar.t

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025

use strict;

use warnings;

use Test::More;

use 1lib ’t/1lib’;

use PScm::Test tests => 3;

BEGIN { use_ok(’PScm’) }

eval ok(<<EOF, ’1’, ’let binds in parallel’);
(let ((a 1)
b 2))
(let ((a b)
(b a))
b))
EOF

eval_ok(<<EQF, ’2’, ’let* binds sequentially’);
(let ((a 1)
(b 2))
(let* ((a b)
(b a))
b))
EOQOF

vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.0.4.tgz

86

CHAPTER 7. ANOTHER VARIATION ON LET

Chapter 8

List Processing

It was mentioned in Section 1.2 on page 4 that one of the great strengths of the Lisp family of languages
is their ability to treat programs as data: to manipulate the same list structures that their expressions
are composed of. So far we haven’t seen any of that functionality implemented in our interpreter.

Those list structures are the ones constructed by the Reader, and the Reader can be considered
a general purpose data input package: all it does is categorise and collect input into strings, numbers,
symbols and lists. That’s a very useful structure for organizing any kind of information, not just PScheme
programs. The read-eval-print loop will, however, attempt to evaluate any such structure read in, so we
need a way of stopping that.

8.1 quote

The appropriate form is called quote and is a PScm::SpecialForm. It takes a single argument and
returns it unevaluated:

> (quote a)

a
> (quote (+ 1 2))
+12)

The implementation is rather trivial: Quote is used to turn off evaluation. Since special forms don’t have
their arguments evaluated for them, all that the Apply () method in PScm::SpecialForm::Quote need
do is to return its first argument, still unevaluated.

Here’s PScm::SpecialForm::Quote.

106 package PScm::SpecialForm: :Quote;
107

108 use base qw(PScm::SpecialForm);
109

110 sub Apply {

111 my ($self, $form, $env) = @_;
112 return $form->first;

113 }

114

115 1;

87

88 CHAPTER 8. LIST PROCESSING

8.2 1list

Another useful operation is called 1ist. It takes a list of arguments and constructs a new list from them.
It is just a PScm::Primitive and so its arguments are evaluated:

> (list (- 8 1) "hello")
(7 "hello")

It does nothing itself but return the list of its evaluated arguments to the caller as a new PScm::Expr::
List, so it’s also trivial to implement. To recap, all PScm::Primitive classes share a common Apply ()
method that evaluates the arguments then calls the class-specific _apply () method. So all we have to do
is to subclass PScm::Primitive to PScm::Primitive::List and give that new subclass an appropriate
—apply () method.

066 package PScm::Primitive::List;
067
068 use base qw(PScm::Primitive);

069
o70 sub _apply {
071 my ($self, Qargs) = @_;
072
073 return new PScm: :Expr::List(@args);
074
}

As has been said, it’s trivial because it just returns its arguments as a new PScm::Expr::List.

8.3 car and cdr

So we can create lists, but what can we do with them? We already have two primitive internal operations
on lists, namely the PScm: :Expr::List::first() and rest() methods. They are something like the
complement of the 1ist primitive in that they take apart a list into its components. Bowing to historical
precedent however, Scheme, and hence PScheme, doesn’t call them “first” and “rest”, instead they are
called car and cdr!.

Again their implementation is simple, we add a new subclass of PScm::Primitive for each of them,
and give each new class an _apply() method that calls the relevant internal method. Here’s PScm::
Primitive::Car.

077 package PScm::Primitive::Car;

078

079 use base qw(PScm::Primitive);
080

08t sub _apply {

082 my ($self, $arg) = 0_;
083

1Obligatory footnote. CAR stands for “the Contents of the Address part of the Register” and CDR stands for “the
Contents of the Decrement part of the Register.” This is a reference to the original hardware on which the first Lisp system
was implemented, and means nothing now but the names have stuck.

8.4. CONS 89

084 $self->_check_type($arg, ’PScm::Expr::List’);
085 return $arg->first;
086 }

It uses _check_type() to verify that its argument is a list, then calls its first () method, returning the
result.
Here’s the equivalent PScm::Primitive::Cdr class.

089 package PScm::Primitive::Cdr;

090

091 use base qw(PScm::Primitive);

092

093 sub _apply {

094 my ($self, $arg) = @_;

095

096 $self->_check_type($arg, ’PScm::Expr::List’);
097 return $arg->rest;

098 }

8.4 cons

We’re only missing one piece from our set of basic list operations now, but before adding that it is
necessary to explain and rectify a significant deviation that PScheme has so far made from other Lisp
and Scheme implementations. In our PScheme implementation lists have been implemented as object
wrappers around Perl lists. This had the advantage that the Perl implementation was as simple as it
could be. However real Lisp systems implement lists as chains of what are called cons cells, or more
commonly pairs. A cons cell, is a structure with two components, both references to other data types.
For a true list, the first component points at the current list element and the second component points
at the rest of the list. The first component is called the car and the second component the cdr, hence
the eponymous functions that access those components. So for example the lisp expression (foo ("bar"
10) baz) Is not properly implemented as in Figure 3.1 on page 17, but as shown in Figure 8.1 on the
following page.

The unfilled cdr pointers in the figure represent null pointers and terminate the list structure.

This means that a true Lisp list is in fact a linked list. A primary advantage of this is that the
internal first() and rest() (car and cdr) operations are equally efficient: there is no need for rest ()
to construct a new list object, it just returns it’s rest component. A second advantage is that cons cells
are more flexible than lists. A true list is a chain of cons cells linked by their cdr component, ending in
a cons cell with an empty cdr. In general the cdr need not point to another cons cell, it could equally
well point to any other data type. A cons cell is constructed with the primitive operator cons.

8.4.1 Dot Notation

Since we can now build structures that cannot be represented in simple “(a b ¢)” list notation, we need
to extend that notation to cope. The extension is thankfully very simple: if the last component of a list
is prepended by a period (separated by a space) for example (a . b) it is taken to be the cdr of the
list. This is called dot notation. See Figure 8.2 on the next page.

Dot notation will be supported for both input and output.

90 CHAPTER 8. LIST PROCESSING

Figure 8.1: Cons Cell Representation of a nested list (foo ("bar" 10) baz)

Cell
° Cell
[= cdr
[cazr]

[] O
S
car
T
[=)
| = (S
Symbol
N :

N
Figure 8.2: The pair (a . D)

m Symbol
u
[car]

Dot notation is not limited to just dotted pairs, for example in Figure 8.3 on the facing page you can
see that more complex structures can also be represented.
Dot notation is actually capable of representing any structure we can envisage?. In fact it is reasonable
to think of the normal list notation we have been using so far as merely a convenient shorthand for dot
notation. For example the list (a) is the same as the pair (a . ()) (because () is the empty list.)
Likewise the list (a b ¢) can be represented as (a . (b . (c . ()))). Obviously this unwieldy
notation is to be avoided unless necessary, but you should at least be aware of it.

Dot notation has a number of uses. Most importantly it allows us to easily specify variable numbers
of arguments to our lambda expressions: if the formal arguments in a 1lambda expression are dotted, then

2Well, actually it is possible to imagine circular structures that would defeat any notation. A true Scheme will even
allow the creation of such circular lists, with such dubious expressions as (set-cdr! x x), but that’s a world of pain that
we will stay well away from.

8.5. IMPLEMENTATION 91

Figure 8.3: The structure (a b . «¢)

that can be taken to mean the dotted symbol is to be bound to a list of the remaining actual arguments.
For Example:

> (let ((test

> (lambda (a b . c)
> (list a b ©))))
> (test 1 2 3 4 5))

(12 (345)

The a and b are bound to 1 and 2 as always, but the ¢, because it occupies the entirity of the rest of the
formal argument list gets bound to the remaining list of additional arguments.

Interestingly this also allows entirely arbitrary lists of arguments. If you think about it the dotted
pair notation (. a) can be made perfectly legal for input, and is equivalent to the symbol a: the
opening brace implies a list, but the first symbol encountered is the cdr of a list that has not started
to form yet, so the result is just that symbol. Since we must accept lambda expressions with such an
argument declaration, we must also accept lambda expressions with a single symbol instead of a list of
arguments. For example we could define our 1ist primitive in PScheme like:

> (let ((list (lambda args args)))
> (list 1 2 3 4 5))
(1 2345)

list takes any number of arguments as a single list args and returns them.

8.5 Implementation

Let’s make the change to use that alternative implementation. Since the PScm::Expr::List class hides
its internal structure and provides accessor methods, technically that should be the only package that
needs to change. However it is worthwhile making use of the new list structure in other parts of the
PScheme system. The language is highly recursive, and this new linked list structure lends itself to
recursion much more naturally than a plain perl @list does.

92 CHAPTER 8. LIST PROCESSING

8.5.1 Changes to Expressions

To get us started, here’s the new implementation of PScm::Expr::List:

059 package PScm::Expr::List;
060 use base qw(PScm::Expr);

061

062 sub new {

063 my ($class, @list) = @_;

064

065 $class = ref($class) || $class;

066 if (@list) {

067 my $first = shift @list;

068 $class->Cons($first, $class->new(@list));
069 } else {

070 new PScm::Expr::List::Null();

071 }

o2 }

073

o74 sub Cons {

075 my ($class, $first, $rest) = @_;

076 return PScm::Expr::List::Pair->new($first, $rest);
077}

078

o79 sub as_string {

080 my ($self) = @_;

081 return ’(’ . join(® ’, $self->strings) . ’)’;
082 }

The new() method on Lines 62-72 is a little more complicated than it was, because it has to recurse
on its argument list building a linked list. If the list is not empty then on Line 68 it calls an ancilliary
method Cons () (defined on Lines 74-77) to actually construct a new PScm::Expr::List::Pair node (a
cons cell). So the PScm::Expr::List class is now in fact abstract. Although it has a new() method, that
method actually returns instances of either PScm::Expr::List::Pair or another new object, PScm::
Expr::List::Null, which represents the empty list.

if you remember the old implementation of new() just wrapped its argument list:

036 sub new {

037 my ($class, @list) = @_;

038

039 $class = ref($class) || $class;
040 bless [@list], $class;

041 }

The as_string() method of PScm::Expr::List has changed too. Rather than just mapping as_-
string() over the components of the list, it calls a separate strings () method that will return an array
of strings, and joins and wraps that. The main reason for that is to cope with dotted pair notation.
We'll see how strings() works soon.

8.5. IMPLEMENTATION 93
Much of the functionality that was in PScm::Expr::List has been moved out into PScm::Expr::

List::Pair, shown next:

085 package PScm::Expr::List::Pair;
086 use base qw(PScm::Expr::List);

087

088 use constant {

089 FIRST => 0,

090 REST => 1,

091 };

092

093 sub new {

094 my ($class, $first, $rest) = @_;

095 bless [$first, $rest], $class;

096 }

097

098 sub value {

099 my ($self) = @_;

100 my @value = ($self->[FIRST], $self->[REST]->value);
101 return @value;

102 }

103

104 sub first { $_[0] [FIRST] }

105

106 sub rest { $_[0] [REST] }

107

108 sub strings {

109 my ($self) = @_;

110 return ($self->[FIRST]->as_string,

111 $self->[REST]->strings) ;

112 }

113

114 sub Eval {

115 my ($self, $env) = @_;

116 my $op = $self->[FIRST]->Eval($env);
117 return $op->Apply($self->[REST], $env);
118 }

119

120 sub map_eval {

121 my ($self, $env) = O_;

122 return $self->Cons($self->[FIRST]->Eval ($env),
123 $self->[REST]->map_eval ($env));
124 }

125

126 sub is_pair { 1 }

94 CHAPTER 8. LIST PROCESSING

As a minor optimization, PScm::Expr::List::Pair will store its first and rest components in an array
ref rather than a hash. For that reason it declares two constants FIRST and REST to act as indexes into
that structure. PScm::Expr::List::Pair has its own new() method which we’ve already seen being
called by Cons (). It just collects its two arguments into a new object.

The other methods in PScm::Expr::List::Pair are fairly straightforward.

e The value() method on Lines 98-102 converts the linked list back into a Perl list®. Because the
structure is no longer necessarily a true list we must supply an alternative value() method in
PScm::Expr which just returns $self (ignoring the dot notation). There is another value()
method in PScm::Expr::List::Null that returns the empty (Perl) list and likewise terminates the
recursion of PScm: :Expr: :List: :value().

e The first() and rest() methods are simplified, they are now just accessors to their equivalent

fields.

e As mentioned above, the as_string() method from PScm::Expr::List has to deal with dot
notation, so cannot simply map an as_string() over the list’s value(). Instead it calls a helper
method strings().

e strings(), on Lines 108-112, returns a perl list of the string representation of the first item on the
list, plus the result of calling itself on the rest of the list. There is an implementation of strings ()
in PScm::Expr::List::Null that just returns the empty (Perl) list:

141 sub strings { O; }

and another at the root of the heirarchy in PScm::Expr which catches the situation where a type
other than a list or null is the cdr of a list:

017 sub strings {

018 my ($self) = @_;
019 return (’.’°, $self->as_string);
020 }

It returns a list of the string ’ .’ plus the result of calling as_string() on itself. Since it knows it
must be terminating a list, it need not recurse.

e Back to PScm::Expr::List::Pair. The Eval () method on Lines 114-118 is functionally unchanged
from the previous implementation, but it directly accesses the FIRST and REST fields rather than
using the first() and rest() method calls for a slight performance improvement.

3The reason for the temporary @value variable is not redundant clarification of the code, it is a workaround for a rather
obscure piece of Perl behaviour. If the code had simply said:

return ($self->[FIRST], $self->[REST]->value);

then the scalar context imposed by the isTrue() method in PScm::Expr would cause Perl to treat the comma as the
comma operator, throwing away the left hand side and returning only the right, recursively, so all lists would end up being
treated as false.

8.5. IMPLEMENTATION 95

e A new map_eval () method on Lines 120-124 will come in very handy later. It takes an environment
as argument and builds a copy of itself with each component replaced by the result of evaluating
that component in the argument environment. Because, like strings() it must deal with the
possibility that the structure is not a true list, an additional map_eval () method is provided in the
base PScm::Expr class that just returns the result of calling Eval() on $self.

e Finally, an identifying is_pair() method is defined to be true in this class only. It is defined false
by default in PScm::Expr.

Another part of our alternative implementation of lists is that new PScm::Expr::List::Null class. It
represents the PScheme empty list, and also quite reasonably descends from the list class. It provides
a simple new() method with no arguments, and overrides the value() and strings() methods to just
return an empty perl list.

129 package PScm: :Expr::List::Null;
130 use base qw(PScm::Expr::List);

131

132 sub new {

133 my ($class) = @_;
134

135 $class = ref($class) || $class;
136 bless {}, $class;
137 }

138

139 sub value { O; }

140

141 sub strings { O; }
142

143 sub first { $_[0] }
144

145 sub rest { $_[0] }
146

147 sub is_null { 1 }

Interestingly, it also overrides first() and rest() to return $self, so the car or cdr of the empty list
is the empty list, and it overrides Eval() to just return $self too, so an empty list evaluates to itself?.

Back to our cons function. Scheme implementations have a cons operation that takes two arguments
and creates a cons cell with its car referencing the first argument, and its cdr referencing the second.

> (cons 10 (list 20 30))
(10 20 30)

Thus the car and cdr operations are the precise complement of cons: cons constructs a cell, and car
and cdr take the cell apart.

4This interesting trick of having an object to represent the absence of another object is a well-known design pattern
called the Null Object Pattern.

96 CHAPTER 8. LIST PROCESSING

> (car (cons 10 (1list 20 30)))
10

> (cdr (cons 10 (1list 20 30)))
(20 30)

Provided the second argument to cons is a list, the result will also be a list, but there is no requirement
for the second argument to be a list. That makes cons a second way to create dotted pairs, other than
inputting them directly:

> (quote (a . b))

(a . b)

> (cons (quote a) (quote b))
(a . b)

> (cons (quote a) (quote (b)))
(a b)

cons is implemented in the normal way, by subclassing PScm::Primitive and giving the new class,
PScm::Primitive::Cons in this case, an _apply() method. Here’s that method.

101 package PScm::Primitive::Cons;
102

103 use base qw(PScm::Primitive);
104

105 sub _apply {

106 my ($self, $car, $cdr) = 0@_;
107

108 return PScm: :Expr::List->Cons($car, $cdr);
109 }

110

111 1;

It can be seen that all it does is to call PScm::Expr::List’s Cons () method.

8.5.2 Changes to Primitives and Special Forms

As I've already said, It will pay to make use of this new list structure wherever possible throughout the
PScheme implementation. The first place we shall do so is in PScm: :Primitive: :Apply (), which can
now make use of that new map_eval () method:

007 sub Apply {

008 my ($self, $form, $env) = @_;

009

010 my Qevaluated_args = $form->map_eval($env)->value();
011 return $self->_apply(@evaluated_args);

012 }

The question arises as to why I'm then just calling value() on the result and passing an ordinary perl
list to the individual primitives, after I just said that it was worthwhile passing around the new linked

8.5. IMPLEMENTATION 97

list structures. It’s just a personal choice, but I feel that the individual primitives should present an
“abstraction layer” such that anything below that layer is pure Perl and does not depend on the details
of the PScheme implementation above that layer. Anyway, that’s how I see it.

Special forms, on the other hand, are very much part of the PScheme implementation and do make
full use of the new linked lists.

First up is PScm::SpecialForm::Let. If you remember let and friends make use of a shared Un-
Pack() method which used to return a list of two references to perl lists, one for the symbols and one
for the values, plus the body of the 1let expression. Now it will return PScheme lists instead, and those
lists will be passed to the various Extend* () methods in the environment implementation, which will
also have to change.

anyway here’s the new PScm: :SpecialForm: :Let: :Apply(O):

012 sub Apply {

013 my ($self, $form, $env) = @_;
014
015 my ($symbols, $values, $body) = $self->UnPack($form);
016
017 return $body->Eval ($env->Extend($symbols, $values));
018

}

Only the variable names have changed: $symbols and $values used to be called $ra_symbols and
$ra_values to indicate that they were references to arrays. This is no longer the case.

The UnPack() still just calls value() on the $form to get the bindings and the body, but now it
makes use of an additional unpack bindings () method to build the new PScheme lists:

020 sub UnPack {

021 my ($self, $form) = @_;

022

023 my ($bindings, $body) = $form->value;

024 my ($symbols, $values) = $self->unpack_bindings($bindings);
025 return ($symbols, $values, $body);

026 }

unpack_bindings () itself is where the real work gets done:

028 sub unpack_bindings {

029 my ($self, $bindings) = @_;

030 if ($bindings->is_null) {

031 my $null = new PScm::Expr::List::Null();

032 return ($null, $null);

033 } else {

034 my ($symbols, $values) =

035 $self->unpack_bindings($bindings->rest);

036 return (

037 PScm: :Expr: :List->Cons($bindings->first->first,
038 $symbols),

039 PScm: :Expr: :List->Cons($bindings->first->rest->first,

98 CHAPTER 8. LIST PROCESSING

040 $values)
041);

042 }

043 }

If it has reached the end of the bindings it creates a new null object and returns two of it. otherwise it
calls itself on the rest of the bindings, collects the results, then prepends the symbol from the current
binding onto the first list and the value from the current binding onto the second list. Finally it returns
those two new lists. Essentially it recurses to the end of the bindings then builds a pair of lists on the
way back up. This guarantees that the symbols and values are in the same order in the results as they
were in the bindings.

Given the new UnPack() method, the Apply () methods for PScm::SpecialForm::LetRec:

050 sub Apply {

051 my ($self, $form, $env) = C_;

052

053 my ($symbols, $values, $body) = $self->UnPack($form);
054

055 return $body->Eval(

056 $env->ExtendRecursively($symbols, $values));

057 }

and PScm::SpecialForm::LetStar:

064 sub Apply {

065 my ($self, $form, $env) = Q@_;
066
067 my ($symbols, $values, $body) = $self->UnPack($form);
068
069 return $body->Eval(
070 $env->ExtendIteratively($symbols, $values));
071
}

are similarily unchanged except for variable renaming.
I’ve taken the opportunity to make a small but significant change to PScm::SpecialForm::If:

o78 sub Apply {

079 my ($self, $form, $env) = C_;

080

081 my $condition = $form->first;

082 my $true_branch = $form->rest->first;
083 my $false_branch = $form->rest->rest->first;
084

085 if ($condition->Eval($env)->isTrue) {
086 return $true_branch->Eval ($env);
087 } else {

088 return $false_branch->Eval($env);
089 }

090 }

8.5. IMPLEMENTATION 99

Because it extracts the condition, true and false branches from the $form by using combinations of
first() and rest() rather than just using value(), and because the first () and rest() of the empty
list is the empty list, and because the empty list evaluates to itself, our new if no longer requires a third
argument. If the test fails and a false branch is not supplied the result will be the empty list.

PScm: :SpecialForm: :Lambda: : Apply () is unchanged, but the closure that it constructs will make
use of the new lists when it interacts with the changed environment implementation.

The only remaining special form is the new PScm::SpecialForm::Quote, but we’ve seen that
already.

8.5.3 Changes to Closures

In fact there is very little change in this package. The differences are that the specific PScm: :Closure: :
Function: :Apply () method (which applies a lambda closure to its arguments) now uses map_eval() to
construct a PScheme list of evaluated arguments and pass that to the shared _apply () rather than a
perl list:

039 sub Apply {

040 my ($self, $form, $env) = @_;

041

042 my $evaluated_args = $form->map_eval($env);
043 return $self->_apply($evaluated_args);

044 }

The shared _apply() method recieves a PScheme list of actual arguments rather than a reference to
an array and it passes that, plus its PScheme list of formal arguments directly to the environment’s
ExtendUnevaluated() method:

017 sub _apply {

018 my ($self, $args) = Q_;

019

020 my $extended_env =

021 $self->{env}->ExtendUnevaluated($self->{args}, $args);
022 return $self->{body}->Eval($extended_env);

023 }

8.5.4 Changes to the Environment

The various Extend*() methods of PScm::Env now take PScm::Expr::List objects as arguments
rather than perl listrefs. This makes them the right place to implement the new variable arguments
functionality of 1lambda. First of all Extend () itself:

014 sub Extend {

015 my ($self, $symbols, $values) = Q_;

016

017 return $self->ExtendUnevaluated($symbols,

018 $values->map_eval($self));

019 }

100 CHAPTER 8. LIST PROCESSING

Variable names have changed to reflect the fact that they are no longer references to arrays, and Extend ()
uses map_eval () to evaluate the list of values before passing them to ExtendUnevaluated().
ExtendUnevaluated() is similarily changed:

021 sub ExtendUnevaluated {

022 my ($self, $symbols, $values) = Q_;

023

024 my %bindings;

025 $self->_populate_bindings(\)bindings, $symbols, $values);
026 my $newenv = $self->new()bindings);

027 $newenv->{parent} = $self;

028 return $newenv;

029 }

It uses a new private _populate_bindings() method to populate a hash of bindings from the $symbols
and $values lists. After that it does what it always did, creating a new PScm::Env and setting its
parent field to $self before returning it.

The private _populate_bindings () method actually does the “parsing” of the argument list of sym-
bols and their binding to equivalent values.

031 sub _populate_bindings {

032 my ($self, $bindings, $symbols, $values) = @_;

033 if ($symbols->is_null) {

034 die "too many arguments\n" unless $values->is_null;
035 } elsif ($symbols->is_pair) {

036 if ($values->is_pair) {

037 my $symbol = $symbols->first;

038 if ($symbol->is_symbol) {

039 $bindings->{$symbol->value} = $values->first;
040 $self->_populate_bindings($bindings,

041 $symbols->rest,
042 $values->rest);
043 } else {

044 die "bad formal arguments[1]:",

045 $symbol->as_string(), "\n";

046 }

047 } else {

048 die "not enough arguments\n";

049 }

050 } elsif ($symbols->is_symbol) {

051 $bindings->{$symbols->value} = $values;

052 } else {

053 die "bad formal arguments[2]:",

054 $symbols->as_string(), "\n";

055 }

056 }

8.5. IMPLEMENTATION 101

On Line 33 it checks to see if it has reached the end of the list of symbols. If it has, then it throws an
error if it has not also reached the end of the list of values (too many arguments).

If $symbols is not null, then on Line 35 it checks to see if it is a pair. If it is, then it gets the current
symbol, checks that it is a symbol, binds it to the equivalent value, and recurses on the rest of the two
lists.

If $symbols is not a pair, then on Line 38 it checks to see if it is itself a symbol. This would correspond
to either a single args in a lambda statement like (lambda args ...), or a dotted pair terminating a
list of arguments. In either case if $symbols is a symbol, it binds it to the entirity of the rest of the
$values list and terminates the recursion.

If $symbols is none of the empty list, a pair or a symbol then something is seriously wrong and
_populate_bindings() throws an exception.

Next up is ExtendRecursively (). It is unchanged except that, as in other cases, its arguments have
been renamed because they are no longer array references:

058 sub ExtendRecursively {

059 my ($self, $symbols, $values) = Q_;

060

061 my $newenv = $self->ExtendUnevaluated($symbols, $values);
062 $newenv->_eval_values();

063 return $newenv;

064 }

Finally, ExtendIteratively () benefits from the new lists too. It returns $self if the list of symbols is
empty, otherwise it calls Extend() on the first of each list then calls itself on the extended result with
the rest of the list:

066 sub ExtendIteratively {

067 my ($self, $symbols, $values) = Q_;

068

069 if ($symbols->is_null) {

070 return $self;

071 } else {

072 return $self->Extend($symbols->first, $values->first)
073 ->ExtendIteratively($symbols->rest,

074 $values->rest);

075 }

076 }

Note that ExtendIteratively() is only used by let*, and so does not need to deal with non-lists.

8.5.5 Changes to the Reader

The changes in thr Reader support the input of dot notation, and they make direct use of PScm: :Expr: :
List::Cons() to facilitate this. First of all Read () itself has been somewhat simplified:

017 sub Read {
018 my ($self) = @_;
019

102 CHAPTER 8. LIST PROCESSING

020 my $token = $self->_next_token();
021 return undef unless defined $token;
022

023 if ($token->is_open_token) {

024 return $self->read_list();

025 } else {

026 return $token;

027 }

028 }

It may look very different but all that has really happened is that the old looping code which collects a
list has been moved out into a separate method, and that method, read_list (), is now recursive instead
of iterative:

030 sub read_list {

031 my ($self) = @_;

032 my $token = $self->read_list_element();

033 if ($token->is_close_token) {

034 return new PScm::Expr::List::Null();

035 } elsif ($token->is_dot_token) {

036 $token = $self->read_list_element();

037 die "syntax error" unless $token->is_expr;

038 my $close = $self->read_list_element();

039 die "syntax error" unless $close->is_close_token;
040 return $token;

041 } else {

042 return PScm: :Expr::List->Cons($token, $self->read_list());
043 }

044 }

read_list () collects its components using another new method read_list_element(). On Line 33 if
it detects a closing brace it returns the empty list. If the token is not a closing brace, then on Line 35
if the token is a dot, it reads the next element, checks that it is an expression, checks that the element
after that is a closing brace, and returns the element just read as the entire list. In the final case, if the
token is neither a closing brace or a dot, it uses Cons() to construct a list with the current token as the
first element and the result of calling read_1ist () as the rest. Hopefully you can convince yourself that
this will deal correctly with both ordinary lists and dotted pair notation.

read _list_element () just centralises the otherwise tedious and repetitive checking for EOF which is
a syntax error (unterminated list) while collecting list elements:

046 sub read_list_element {

047 my ($self) = @_;

048 my $token = $self->Read();
049 die "unexpected EOF"

050 if !'defined $token;

051 return $token;

052 }

8.6. SUMMARY

103

Finally next_token() has an extra clause to detect a standalone period (dot) and if it does it returns
an instance of a new token class PScm::Token::Dot:

054 sub _next_token {
my ($self) = @_;

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
o8 }

while (!$self->{Line}) {

for

}

die

$self->{Line} = $self->{FileHandle}->getline();
return undef unless defined $self->{Line};
$self->{Line} =~ s/"\s+//s;

($self->{Line}) {
s/"\(\s*// && return PScm::Token: :0Open->new();
s/"\)\sx// &&% return PScm: :Token::Close->new();
s/"\.\s*// && return PScm: :Token: :Dot->new();
s/~ ([-+]17\d+)\s*//
&& return PScm::Expr::Number->new($1);
s/™"((2:(2:\\D) I ([""1))*)"\s*// && do {
my $string = $1;
$string =" s/\\//g;
return PScm: :Expr::String->new($string);
s
s/7(["\s\(\)1+)\sx//
&% return PScm::Expr::Symbol->new($1);

"can’t parse: $self->{Line}";

The new class is in PScm/Token . pm alongside the others:

027 package PScm::Token: :Dot;

028

029 use base qw(PScm::Token);

030

031 sub is_dot_token { 1 }

032

033 1;

There is a default is_dot_token() method in PScm::Token that returns false.

8.6 Summary

In interpreter 0.0.5 five related operations for creating and manipulating list structures have been added.
We’ll put those to good use in the next version of the interpreter when we look at macros. In the process
of implementing one of those operations, cons, the basic list implementation was changed to be closer to

104 CHAPTER 8. LIST PROCESSING

a “standard” scheme implementation, and out of that we won the ability to construct dotted pairs, and
from that we got variable arguments to lambda expressions.

Just for the sake of completeness here’s the changes to our top-level PScm: :ReadEvalPrint () method,
where we add the new bindings for these functions in the initial environment.

031 sub ReadEvalPrint {

032 my ($infh, $outfh) = @_;

033

034 $outfh ||= new FileHandle(">-");

035 my $reader = new PScm::Read($infh);

036 while (defined(my $expr = $reader->Read)) {

037 my $result = $expr->Eval(

038 new PScm: :Env(

039 let => new PScm::SpecialForm::Let(),

040 7% => new PScm::Primitive: :Multiply(Q),
041 13 => new PScm::Primitive::Subtract(),
042 if => new PScm: :SpecialForm::If(),

043 lambda => new PScm::SpecialForm::Lambda(),
044 list => new PScm::Primitive::List (),
045 car => new PScm::Primitive::Car(),

046 cdr => new PScm: :Primitive::Cdr(),

047 cons => new PScm::Primitive::Cons(),
048 letrec => new PScm::SpecialForm::LetRec(),
049 >let*’ => new PScm::SpecialForm::LetStar(),
050 quote => new PScm::SpecialForm::Quote(),
051)

052);

053 $result->Print ($outfh);

054 }

055 }

8.7 Tests

Tests for version 0.0.5 of the interpreter are in t/PScm_List.t and t/PScm_dot.t, which you can see in
Listing 8.8.1 on the next page and Listing 8.8.2 on page 106.

The tests in t/PScm_List.t exercise our new list functions. The first test shows that 1ist evaluates
its arguments then returns a list of them. The second test proves that the car of the list (1 2 3) is
the value 1. The third test proves that the cdr of the list (1 2 3) is the list (2 3). The fourth test
proves that (cons 1 (list 2 3)) is (1 2 3). The fifth test proves that quote protects its argument
from evaluation: (quote (list 1 2 3)) is (list 1 2 3). Lastly, three tests verify that dot notation
on input and output behaves as expected.

The tests in Listing 8.8.2 on page 106 verify the new variable arguments to lambda expressions, much as
our previous examples demonstrated.

8.8. LISTINGS

8.8 Listings

8.8.1 +t/PScm List.t

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040

use strict;

use warnings;

use Test::More;

use 1lib ’t/1lib’;

use PScm::Test tests => 9;

BEGIN { use_ok(’PScm’) }

eval ok(<<EOF, ’(1 2 3)’, ’list primitive’);
(let ((a 1)
(b 2)
(c 3))
(list a b ¢))
EQF

eval ok(<<EQF, ’1’, ’car primitive’);
(let ((a (Qist 1 2 3)))

(car a))
EQF

eval ok(<<EOF, ’(2 3)’, ’cdr primitive’);
(let ((a (Qist 1 2 3)))

(cdr a))
EQF

eval ok(<<EQOF, ’(1 2 3)’, ’cons primitive’);
(cons 1 (list 2 3))
EOF

eval ok(’(quote (list 1 2 3))’, ’>(list 1 2 3)’,
’quote special form’);

eval_ok(’(quote (1 2 . 3))’, °(1 2 . 3)’, ’dot in’);

eval ok(’(quote (1 2 . (3)))’, ’(1 2 3)’, ’dot out’);

eval ok(’(quote (1 . (2 . (3 .0,
’(1 2 3)?, ’complex dot out’);

vim: ft=perl

105

106 CHAPTER 8. LIST PROCESSING

8.8.2 +t/PScm Dot.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1lib ’./t/1lib’;

005 use PScm::Test tests => 3;

006 use FileHandle;

007

008 BEGIN { use_ok(’PScm’) }

009

010 eval_ok(<<EOF, <<EOR, ’lambda args’);
011 (let ((test (lambda args args)))
012 (test 1 2 3))

013 EOF

014 (1 2 3)

015 EOR

016

017 eval_ok(<<EQF, <<EOR, ’lambda args’);
018 (let ((test (lambda (a b . rest)
019 (list a b rest))))
020 (test 1 2 3 4))

021 EOF

022 (1 2 (3 4))

023 EOR

024

025 # vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.0.5.tgz

Chapter 9

Macros

What is a macro? People familiar with the C programming language will probably think of macros as
being purely a textual substitution mechanism done in some sort of preprocessing step before the compiler
proper gets to look at the code. However that’s a somewhat limited perspective, perfectly adequate for
languages like C but constraining from our point of view. A better definition of a macro is any sort of
substitution or replacement that can happen before the final code is executed.

The real importance of macros is their potential to allow syntactic extensions to their language. In
the case of PScheme, each special form is a syntactic extension to the language, and so our working
definition of a PScheme macro could be something that allows us to define our own special forms within
the language itself. Here’s an example. Suppose the language lacked the let special form. As was
mentioned in Chapter 5 on page 59, let shares a good deal in common with lambda. In fact any let
expression, say

(let ((a 10)
(b 20))
(- b a))
has an equivalent lambda expression, in this case

((lambda (a b) (- b a)) 10 20)

The body of the 1let is the same as the body of the 1lambda, and the bindings of the let are split between
the formal and actual arguments to the lambda expression. In general any let expression:

(let (((vari) (vall))
((var2) (val2))
L)

(ezpression))
has an equivalent lambda form:
((lambda ((vari) (var2) ...)
(ezpression))

(vall) (val2) ...)

107

108 CHAPTER 9. MACROS

Of course internally 1et doesn’t make use of closures, but in the case of the lambda equivalent to let,
the lambda expression is evaluated immediately in the same environment as it was defined, so closure is
immaterial. All that our purported let macro need do then, is to rewrite its arguments into an equivalent
lambda form and have that executed in its place. We developed all of the list manipulation tools we will
need to do that in the 0.0.5 version of the interpreter from Chapter 8 on page 87 (remember that code
and data are the same list objects so list functions can operate on both). All we need to do now is to
think of a way to allow us to define macros.

Macros will obviously share a great deal in common with functions. They will have a separate
declaration and use. They will also take arguments, and have a body that is evaluated in some way. In
fact the first part of their implementation, that of parsing their declaration will be virtually identical to
that of lambda expressions, except that the lambda keyword is already taken. We’ll use “macro” in its
place.

9.1 macro
As before then, we subclass PScm::SpecialForm and give the new class an Apply () method. The new

class is called PScm::SpecialForm::Macro after its eponymous symbol. Here’s the Apply () method
for PScm::SpecialForm::Macro.

121 sub Apply {

122 my ($self, $form, $env) = @_;

123 my ($args, $body) = $form->value;

124 return PScm::Closure: :Macro->new($args, $body, $env);
125 }

It’s virtually identical to PScm::SpecialForm::Lambda except that it creates a new PScm::Closure::
Macro instead of a PScm::Closure::Function. So we’ve left the problem of how to make a macro
actually work until last, in the PScm::Closure::Macro’s Apply () method.

9.2 Evaluating Macros

Consider how PScm: :Closure: :Function: : Apply () works. It evaluates its arguments in the passed-in
environment then gives the results to its parent PScm::Closure:: _apply () method. That _apply()
method extends the environment that was captured when the closure was created with bindings of those
actual arguments to its formal arguments. Then it evaluates its body in that extended environment and
returns the result. Here again is PScm::Closure::Function’s Apply () method:

039 sub Apply {

040 my ($self, $form, $env) = @_;
041
042 my $evaluated_args = $form->map_eval($env);
043 return $self->_apply($evaluated_args);
044
}

And here again is the private _apply () method in the base PScm::Closure class:

9.2. EVALUATING MACROS 109

017 sub _apply {

018 my ($self, $args) = @_;
019
020 my $extended_env =
021 $self->{env}->ExtendUnevaluated($self->{args}, $args);
022 return $self->{body}->Eval($extended_env);
023
}

Any implementation of macros will share something in common with this implementation of functions,
but there will be differences. Obviously a macro should be passed its arguments unevaluated. That way
it can perform whatever (list) operations it likes on that structure. Then when it returns a new form, it
is that form that gets evaluated.

In fact it’s as simple as that, and here’s the Apply () method for PScm::Closure::Macro:

055 sub Apply {

056 my ($self, $form, $env) = @_;

057

058 my $new_form = $self->_apply($form);
059 return $new_form->Eval($env) ;

060 }

Compare that with the Apply () method from PScm::Closure::Function above.

Functions evaluate their arguments, then evaluate their body with those arguments bound. Macros
don’t evaluate their arguments, they evaluate their body with their unevaluated arguments bound, then
they re-evaluate the result. This is quite subtle. Macros perform substitutions on their arguments, but
the result of those substitutions must be subsequently evaluated for the macro to have had the desired
effect.

To finish off this part of the implementation, we must remember that in Section 5.3 on page 68 we
made closures printable, and since macros are a new kind of closure, we must supply the supporting
_symbol () method in PScm::Closure::Macro for the PScm: :Closure: :as_string() method to find.
This _symbol () method returns the symbol macro so that if a macro is printed it will display as (macro
(args) (body)). Here’s the new PScm: :Closure: :Macro: : _symbol () method.

062 sub _symbol {
063 PScm: :Expr: :Symbol->new(’macro’) ;
064 }

9.2.1 Trying it out

Just for fun, let’s take a look at how we might attack the problem which introduced this section: imple-
menting let in terms of lambda. Remember that any let expression has an equivalent lambda form, so
here’s a use of macro that translates one into the other:

(let* ((mylet
(macro (bindings body)
(let* ((names (cars bindings))
(values (cadrs bindings)))
(cons (list (quote lambda) names body) values)))))

110 CHAPTER 9. MACROS

(mylet ((a 1)
(®d 2))
(list a b)))

This code uses let* (remember we're pretending that we don’t have let) to bind mylet to a macro
definition, then it uses mylet in the body of the let*. It makes use of some supporting functions that
we’ll define presently, but first let’s try to get a feel for what it is doing. As stated above, the symbol
macro introduces a macro definition. The arguments to mylet will be the same as those to let, namely
a list of bindings and a body to execute with those bindings in place. It has to separate the bindings
(symbol-value pairs) into two lists, one of the symbols and one of the values. It might be useful in the
following discussion to refer to Figure 9.1 which shows the internal structure of the mylet form that we’ll
be rearranging.

Figure 9.1: Example mylet internal structure

op bindings body
VL \ A
(w=) (so)—(s0) (s o3¢ &)+(30)
binding binding
\4 VL \4

(co(30) (eeo}(30) (=) () E)

The mylet macro uses a function cars to extract the car of each binding (the symbol) into the list called
names.
Here’s the definition of cars:

(letrec (...
(cars
(lambda (1st)
(map car 1st)))
L)
L)

It uses another yet to be defined function map, which does the same as Perl’s built in map: it applies
a function to each element of a list and returns a new list of the results!. map is surprisingly easy to
implement in PScheme:

(letrec ((map
(lambda (op 1st)

1Perl actually borrows its map function from Lisp, which has had one for many years.

9.2. EVALUATING MACROS 111

(if 1st
(cons (op (car 1st))
(map op (cdr 1lst)))
O
.

It’s a recursive function, hence the need for letrec to bind it. Passed a function and list of zero or
more bindings, if the list is empty it returns the empty list, otherwise it cons-es the result of calling the
function on the car of the list with to the result of calling itself on the rest (cdr) of the list. So for
example if 1st is ((a 1) (b 2)), then (map car 1lst) would return the list (a b), and that is exactly
what the cars function does.

cadrs? is very similar. It walks the list collecting the second component of each sublist (the values
of the bindings). So for example given the list ((a 1) (b 2)), cadrs will return the list (1 2).

(letrec (...
(cadrs
(lambda (1st)
(map (lambda (x) (car (cdr x))) 1st)))
o)
)

Again it makes use of map this time passing it an anonymous function that will take the car of the cdr
of its argument. This is very much in the style of real Scheme programming now: constructing lambda
expressions on the fly and passing them to other functions as arguments, I hope you are aquiring a taste
for it. Anyway here’s the whole mylet definition plus some code that calls it.

(let* ((mylet
(letrec ((map
(lambda (op 1st)
(if 1st
(cons (op (car 1st))
(map op (cdr 1lst)))
O
(cars
(lambda (1st)
(map car 1st)))
(cadrs
(lambda (1st)
(map (lambda (x) (car (cdr x))) 1lst))))
(macro (bindings body)
(let* ((names (cars bindings))
(values (cadrs bindings)))
(cons (1list (quote lambda) names body)
values))))))
(mylet ((a 1)

2The term cadr is a contraction of “car of the cdr” e.g. (cadr x) == (car (cdr x)). this sort of contraction is often
seen in scheme code, sometimes nested as much as four or five levels deep, i.e. cadadr.

112 CHAPTER 9. MACROS

(® 2))
(1list a b)))

After collecting the names into one list and the values into another, the mylet macro builds:
((lambda ((names)) ((body))) (values))

Where (names), (body) and (values) are expanded using the appropriate magic:

(cons (list (quote lambda) names body) values)

A point worth noting is that the constructed mylet macro is a true closure, since it has captured the
definitions of the cars and cadrs functions and executes in an outer environment (the let*) where those
functions are not visible.

9.2.2 An Improvement

The macro substitution system demonstrated so far is pretty crude, after all it requires the programmer
to directly manipulate low-level list structures, rather than just supplying an “example” of how the
transformation is to be performed. In fact the topic of macro expansion as provided by a full Scheme
implementation is deserving of a book to itself. Apart from the templating ability, there are also issues
of avoiding variable collision (so-called hygenic macros) so that full Scheme macros are much closer to
the idea of C++'s inline functions than they are to C’s #define?.

However there is one simple addition that we can make, which will greatly improve the usefulness
of macros, and that involves an extension to the quote special form that we introduced in Section 8.1
on page 87. If you remember quote just returns its argument, preventing unwanted evaluation. This
already has proved useful in the construction of macros, as we have seen above.

Now one perfect use of quote would be to provide templates for macros, if we could arrange that parts
of the quoted template could be substituted before the quoted template is returned. To that purpose
we introduce a keyword unquote which marks a section of a quoted form for evaluation. Perhaps an
example might make this clear:

> (let ((x "rain"

> (y "spain")

> (z "plain"))

> (quote

> (the (unquote x)

> in (unquote y)

> falls mainly on the (unquote z))))

(the "rain" in "spain" falls mainly on the "plain")

3A full scheme implementation provides an extend-syntax special form. Using extend-syntax, defining mylet is as
simple as:

(extend-syntax (mylet)
(mylet ((var val) ...) body)
((lambda (var ...) body) val ...))

9.2. EVALUATING MACROS 113

The 1et bindings bind x to the string "rain" etc. That is not the important part. The important part is
the body of the 1et where the use of the unquote keyword allows evaluation of the contained expressions
(x etc.) despite their being inside a quote.

How can this help us with macro definitions? Well in a big way! consider this macro definition of a
while loop:

(define while
(macro (test body)
(quote (letrec
((loop
(lambda ()
(if (unquote test)
(begin
(unquote body)
(loop))
0NN
(loop)))))

It uses a few features that aren’t available yet, like define and begin (which just executes one expression
after another), and it would seem to be in danger of running out of stack, but I hope you can see that
essentially the quote and unquote are doing all of the work building the body of the macro. The quoted
result is shown in bold, with the internal substitutions unbolded again.

Implementing unquote is easy, but it’s a little different from the normal special forms and primitives
we’ve seen up to now. I've been careful to only refer to it as a “keyword”, because it means nothing
special outside of a quoted expression.

We'll obviously have to change the way quote works to make this happen, so lets start by looking at
the changed PScm: :SpecialForm: :Quote: : Apply ().

132 sub Apply {

133 my ($self, $form, $env) = Q_;
134 return $form->first->Quote($env);
135 }

Rather than just returning its first argument, it now calls a new method Quote () on it, passing Quote ()
the current environment. Quote () essentially just makes a copy of the expressions concerned, but it keeps
an eye out for unquote symbols. Now this method will be implemented in the PScm::Expr classes as
follows:

The default Quote () in PScm::Expr just returns $self:

041 sub Quote { $_[0] }
The Quote () in PScm::Expr::List::Pair is where most of the decision making happens.

133 sub Quote {

134 my ($self, $env) = Q_;
135 if ($self->[FIRST]->is_unquote) {
136 return $self->[REST]->first->Eval($env);

137 } else {

114 CHAPTER 9. MACROS

138 return $self->quote_rest($env);
139 }
140 }

On Line 135 it checks to see if the first element of the list is the symbol unquote (is_unquote.) If it is
then it evaluates the second element in the current environment and returns it. If the first element is
not unquote then it hands over control to a helper routine quote_rest ().

Here’s quote_rest ().

142 sub quote_rest {

143 my ($self, $env) = 0_;

144 return $self->Cons(

145 $self->[FIRST]->Quote($env),

146 $self->[REST]->quote_rest ($env)
147);

148 }

It just walks the list, recursively, constructing a copy as it goes by calling Quote () on each element and
calling Cons () on the quoted subexpression and the result of the recursive call?.

The PScm::Expr::List::Null package inherits Quote() from PScm::Expr, which just returns
$self, and PScm::Expr also has a quote_rest() method which also just returns $self and usefully
terminates the recursion of the non-empty PScm::Expr::List quote_rest () method.

043 sub quote_rest { $_[0] }

That just leaves that is_unquote() method. Well since only a symbol could possibly be unquote, we
can put a default is_unquote() method at the top of the expression type hierachy, in PScm::Expr,
which just returns false:

012 sub is_unquote { 0 }

Then for PScm::Expr::Symbol only, we override that with a method that checks to see if its value ()
is the string "unquote":

182 sub is_unquote {

183 my ($self) = @_;
184 return $self->value eq "unquote";
185 }

That completes our re-implementation of quote to allow the recognition of the unquote keyword, but
we’re not quite done yet.

quote and unquote turn out to be so useful in the definition of macros that PScheme provides
shorthand syntactic sugar for these forms. The construct ’(ezpression) (note the single quote) gets
expanded to (quote (ezpression)), and similarily the construct , (expression) with a leading comma
gets expanded to (unquote (ezpression)). This is fairly easy to do, so let’s see what changes we need
to make to the reader to make this happen.

First here’s the changes to PScm: :Read: : next_token().

4Note the similarity between this method and the definition of map in Pscheme above.

9.2. EVALUATING MACROS 115

066 sub _next_token {

067 my ($self) = @_;

068

069 while (!$self->{Line}) {

070 $self->{Line} = $self->{FileHandle}->getline();
071 return undef unless defined $self->{Line};

072 $self->{Line} =~ s/ \s+//s;

073 }

074

075 for ($self->{Line}) {

076 s/"\(\s*// && return PScm::Token::0pen->new();
077 s/"\)\sx// &&% return PScm: :Token::Close->new();
078 s/"\?’\s*// && return PScm: :Token: :Quote->new();
079 s/"\,\s*// && return PScm::Token: :Unquote->new();
080 s/"\.\s*// && return PScm::Token: :Dot->new();
081 s/~ ([-+]17\d+)\s*//

082 && return PScm: :Expr::Number->new($1);

083 s/7"((2:(2:\\D) I ([""1))*)"\s*// && do {

084 my $string = $1;

085 $string =~ s/\\//g;

086 return PScm: :Expr::String->new($string);

087 +s

088 s/7(["\s\(\)1+)\s*//

089 &% return PScm::Expr::Symbol->new($1);

090 }

091 die "can’t parse: $self->{Line}";

092 }

The change is very simple. You can see that on Lines 78-79 if it strips a leading quote or comma, it
returns an equivalent token object. Those new token types are both in PScm/Token.pm, here’s PScm::
Token::Quote.

029 package PScm::Token: :Quote;
030

031 use base qw(PScm::Token);
032

033 sub is_quote_token { 1 }

It inherits from PScm::Token and a default is_quote_token() there returns false.

The equivalent PScm::Token::Unquote deliberately inherits from PScm::Token::Quote rather
than just PScm::Token so it gets the overridden is_quote_token() method, and supplies an additional
is_unquote_token() method returning true. Again a default is_unquote_token() in PScm::Token
returns false.

036 package PScm: :Token: :Unquote;
037
038 use base qw(PScm::Token::Quote);

116 CHAPTER 9. MACROS

039
040 sub is_unquote_token { 1 }

The upshot of this is that both PScm::Token::Quote and PScm::Token::Unquote return true for
is_quote_token(), but only PScm::Token::Unquote returns true for is_unquote_token(). Finally,
let’s see how the reader PScm: :Read: :Read () makes use of these new token objects.

017 sub Read {

018 my ($self) = @_;

019

020 my $token = $self->_next_token();

021 return undef unless defined $token;

022

023 if ($token->is_quote_token) {

024 my $expr = $self->Read;

025 die "syntax Error"

026 unless defined($expr) && $expr->is_expr;
027 return new PScm: :Expr::List(

028 $token->is_unquote_token

029 ? new PScm::Expr::Symbol(’unquote’)
030 : new PScm: :Expr::Symbol(’quote’),
031 $expr

032)

033 }

034

035 if ($token->is_open_token) {

036 return $self->read_list();

037 } else {

038 return $token;

039 }

040 }

The additional code on Lines 23-33 checks to see if the token is a quote or unquote token, and if so
reads the next expression, checks that it is valid and returns a new PScm::Expr::List containing the
appropriate quote or unquote symbol and the expression read afterwards. The is_expr() method is
defined to be true in PScm::Expr and false in PScm::Token, and its use here stops dubious constructs
like “7)7.

So we now have a convenient shorthand for quote and unquote. To demonstrate it in action, here’s
that while macro again, this time using the new tokens.

(define while

(macro (test body)

’(letrec
((1oop
(lambda ()
(if ,test

(begin

9.2. EVALUATING MACROS 117

,body
(Loop))
(ODDD).
(loop))))

We’ll be making significant use of macro, quote and unquote in subsequent chapters, so it’s worth
familiarizing yourself now with this new idiom?®.

9.2.3 One Last Addition

Sometimes given a quoted expression, you’d really just like to have it evaluated. It may have been passed
as an argument, or it may have been constructed in some other way. What you need is another round of
evaluation. This is supplied by the special form eval. eval really does do just that. For example:

> (eval ’(x 2 2))
4

The quote stopped the first round of evaluation, but eval got another try at it. Here’s another example:

> (eval (list ’* 4 4))
16

eval is quite simple. It is a special form because it needs access to an environment in which to perform
the evaluation (remember primitives have their arguments evaluated for them and so don’t need an
environment.) It evaluates its first argument in the current environment (special forms don’t have their
arguments evaluated for them,) then it evaluates the result a second time, this time in the top-level
environment. Here’s PScm::SpecialForm::Eval:

093 package PScm::SpecialForm::Eval;

094
095 use base qw(PScm::SpecialForm) ;

096

097 sub Apply {

098 my ($self, $form, $env) = @_;

099 $form->first () ->Eval ($env)->Eval ($env->top) ;
100 }

You can see that the second round of evaluation is done in the context of the top-level environment
obtained by calling a new method top() on the current environment. That top() method is also very
simple:

5The quote and unquote described here are done differently in true Scheme. A true Scheme implementation distinguishes
between a simple quote which does not recognize unquote, and an alternative quasiquote which does. This means quote is
as efficient as our original implementation, but we still have access to an unquote mechanism. The quote form still has the
“” gyntactic sugar, and quasiquote uses the alternative “¢” (backtick) shorthand. Additionally a full Scheme provides an
unquote-splicing (“,@”) which expects a list and splices it into the existing form at that point.

118 CHAPTER 9. MACROS

014 sub top {

015 my ($self) = @_;

016 if ($self->{parent}) {

017 return $self->{parent}->top;
018 } else {

019 return $self;

020 }

02t }

It just checks to see if it has a parent, calling top() recursively on that if it has, and returning itself if
it hasn’t.

One thing to watch out for with eval: the code that is evaluated is not a closure. Any variables in that
code will be looked up in the top-level environment, not the one where the expression was constructed,
nor the one that is current when eval is called. For example:

(let ((x -))
(x 3 3))

(let ((x -))
(eval ’(x 3 3)))

© V VvV O V V

Nonetheless eval is a useful tool in your kit, we’ll see it in action in later chapters.

9.3 Summary

Here’s the additions to ReadEvalPrint () which bind our new macro feature and eval in the initial
environment. The quote binding was already there, and as shown above, unquote is only a keyword and
does not need a binding:

031 sub ReadEvalPrint {

032 my ($infh, $outfh) = @_;

033

034 $outfh | |= new FileHandle(">-");

035 my $reader = new PScm::Read($infh);

036 while (defined(my $expr = $reader->Read)) {

037 my $result = $expr->Eval(

038 new PScm: :Env(

039 let => new PScm::SpecialForm::Let(),
040 2% => new PScm::Primitive::Multiply(),
041 ’=0 => new PScm::Primitive::Subtract(),
042 if => new PScm::SpecialForm::If(),

043 lambda => new PScm::SpecialForm: :Lambda(),
044 list => new PScm::Primitive::List(),

045 car => new PScm::Primitive::Car(),

046 cdr => new PScm::Primitive::Cdr(),

047 cons => new PScm::Primitive::Cons(),

9.4. TESTS 119

048 letrec => new PScm::SpecialForm::LetRec(),
049 >let*’ => new PScm::SpecialForm::LetStar(),
050 eval => new PScm::SpecialForm::Eval(),
051 macro => new PScm::SpecialForm::Macro(),
052 quote => new PScm::SpecialForm: :Quote(),
053)

054)

055 $result—>Print ($outfh);

056 }

057 }

9.4 Tests

The tests for macro and unquote are in Listing 9.5.1 on the next page.
The first test just implements and tests the mylet example we worked through in the text, and the
second test shows unquote in action with a variation on another example we’'ve already seen. The third
test exercises the syntax extensions in the reader, and the fourth test demonstrates that macros, like
closures, produce a textual representation of themselves when printed.

The tests for eval are in Listing 9.5.2 on page 122. This just does a simple evaluation of a quoted
form.

120 CHAPTER 9. MACROS

9.5 Listings

9.5.1 +t/PScm Macro.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1lib ’t/1lib’;

005 use PScm::Test tests => b5;

006

007 BEGIN { use_ok(’PScm’) }

008

009 eval_ok(<<EQF, ’(1 2)’, ’macros’);
010 (let* ((mylet

011 (letrec ((map

012 (lambda (op 1st)

013 (if 1st

014 (cons (op (car 1lst))

015 (map op (cdr 1st)))

016 O

017 (cars

018 (lambda (1st)

019 (map car 1st)))

020 (cadrs

021 (lambda (1st)

022 (map (lambda (x) (car (cdr x))) 1st))))
023 (macro (bindings body)

024 (let* ((names (cars bindings))
025 (values (cadrs bindings)))
026 (cons (list (quote lambda) names body)
027 values))))))

028 (mylet ((a 1)

029 (d 2))

030 (list a b))

031 EOF

032

033 eval_ok(<<EOF, <<EOR, ’unquote’);
03¢ (let ((x (quote rain))

035 (y (quote spain))

036 (z (quote plain)))

037 (quote (the (unquote x)

038 in (unquote y)

039 falls mainly on the

040 (unquote z))))

041 EOF

042 (the rain in spain falls mainly on the plain)
043 EOR

044

045 eval_ok(<<EOF, <<EOR, ’quote and unquote syntactic sugar’);
046 (let ((x ’rain)

047 (y ’spain)

048 (z ’plain))

049 > (the ,x

9.5.

050
051
052
053
054
055
056
057
058
059
060
061
062
063
064

LISTINGS
in ,y
falls mainly on the
»2))
EQF
(the rain in spain falls mainly on the plain)

ECR

eval_ok(<<EOF, <<EOR, ’macro to string’);
(macro (x)
’(a ,x))
EOQF
(macro (x) (quote (a (unquote x))))
EOR

vim: ft=perl

121

122 CHAPTER 9. MACROS

9.5.2 t/PScm Eval.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1lib ’t/lib’;

005 use PScm::Test tests => 3;
006

007 BEGIN { use_ok(’PScm’) }
008

009 eval_ok(<<EQT, <<EOR, ’eval’);
010 (eval ’(* 2 2))

o11 EOT

012 4

013 EOR

014

015 eval_ok(<<EOT, <<EOR, ’eval operates in the top-level environment’);
ot6 (let ((x -))

017 (eval ’(* 3 3)))

o018 EOT

019 9

020 EOR

021

022 # vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.0.6.tgz

Chapter 10

Side Effects

The question arises as to why the implementation of the def ine special form, described back in Section 2.4
on page 10 has beed deferred for so long, when it would have made so much of the previous discussion
easier, particularily the Scheme examples. Well there are good reasons. Consider what the language so
far has got.

10.1 The Beauty of Functional Languages

So far, the language is fairly complete. It is however a purely functional language, in the sense that
its expressions are like mathematical functions: the value of a variable is fixed for the duration of the
expression, and it makes no difference in what order the arguments to a function are evaluated. There is
no sequential execution (though there is recursion) and most importantly there are no side effects. That
means that one part of a program cannot affect the execution of another part that it does not contain,
except by returning values that get passed in as arguments to that other part.

While this might seem to be a limitation of the language, it does in fact have some very important
advantages. Essentially it makes large-scale expressions in the language very simple to analyse: since
one part of an expression cannot affect another independant part, different components of a program
(including the current environment) could be fed to separate processes, perhaps even separate machines
on a network.

For example suppose we had a networked version of the language. There would be a pool of processes
available to do work, and each process could delegate sub-parts of their work to other processes. A simple
rule might be that for parallel binding, e.g. let bindings and the arguments to closures and primitive
functions, the evaluation of the arguments could be performed in parallel by “outsourcing” the evaluation
of each subexpression to a different process. For example consider the following fragment:

(let ((a (funcil x))

(b (func2 y))

(¢ (func3 z)))
(func4 (func5 a) (funcé b) (func7 c)))

The let could elect to send the subexpression (funcl x) (plus the environment where funcl and x
have a value) to one process, and the subexpression (func2 y) to another. While those two expressions

123

124 CHAPTER 10. SIDE EFFECTS

are being evaluated the let could get on with evaluating (func3 z) itself. Then when it had finished
that evaluation it would collect the result of the other two evaluations and proceed to evaluate its body.
Similarily the evaluation of the body (the call to func4) could outsource the evaluation of the arguments
(funch a) and (funcé b) and get on with evaluating (func7 c), collecting the other results when it
finished, and then proceeding to evaluate the func4 call with those evaluated arguments. It probably
shouldn’t outsource something a simple as variable lookup.

The implementation of this networked programming language is left to you. Some sort of central
ticketing server would be needed, with a queue where requestors could post their requests in exchange
for a ticket, and a pool where clients could post their results so that they need not wait for the requestor
to get back to them, and there’d have to be some way of telling the server that a particular ticket depends
on other tickets, so that a client would never block waiting for the server to return an outstanding ticket. . .
quite an interesting project. The real point though is that both let and lambda not only conceptually
evaluate and bind their arguments in parallel, they could actually do so without disturbing the sense of
the program.

Beyond this point that kind of application becomes nearly impossible because we are about to intro-
duce side effects, in particular variable assignment and, to make that useful, sequences of expressions.
That’s just the proper name for something we’re all very familiar with—one statement following another.

In fact, the primary difference between a statement and an expression is that a statement is executed
purely for its side effects. There are only a couple of different side effects that we need to consider.
The first is variable assignment, that is to say the changing of the existing value of a variable binding.
The second is definition, the creation of new entries in the current environment. Note that this is very
different from what the various let special forms do. They always create a new environment, they never
modify an existing one. Even letrec which may appear to be modifying an existing environment by
changing bindings is not really doing so: nothing actually gets to use that environment until after letrec
has finished building it, the creation of that new environment is atomic as far as the PScheme language
is concerned.

Just to reiterate before we move on. In a functional language it makes no difference in what order
the arguments to a function are evaluated, but in a language with side-effects, if those arguments cause
side-effects during their evaluation, then the order of evaluation is significant and must be taken into
account when designing a program.

10.2 Variable Assignment

This version of the interpreter will only add variable assignment (and sequences,) definition is left for
later. Variable assignment should be a special form, so that the variable being assigned to does not get
evaluated. In Scheme, and PScheme, the symbol bound to the variable assignment special form is set!,
the exclaimation point signifying that this operation has a side effect that might upset an otherwise
purely functional program!. The syntax is simple, but there is a gotcha:

(set! a 10)
Error: no binding for a in PScm::Env

This may sound unnecessarily picky, but for variable assignment to work, there must already be a binding
in place that the assignment can affect. The reasoning is that the variable being assigned to need not be

!The exclaimation point is used to suffix all such side-effecting operations, with the exception of define, for some reason.

10.2. VARIABLE ASSIGNMENT 125

in the current environment frame: it must be searched for, and if we allow set! to create new variables
then they would probably be installed in the current top frame. So the scope of a variable that was set!
would depend on whether the variable already existed or not, which is inconsistent at best.

Anyway, this works:

> (let* ((a 5)

> (Qummy (set! a 10))
> a))

10

This is a bit contrived, we use a dummy variable to allow the set! expression to be evaluated before
the body of the let* returns the new value of a. However it should be clear from the example that the
set! did take effect.

So how do we go about implementing set!? Well as luck would have it, we already have a method
for changing existing bindings in an environment, we have the Assign() method that was developed
for the letrec special form in a previous incarnation. It has precisely the right semantics too (what a
co-incidence!) It searches through the chain of environment frames until it finds an appropriate binding,
assigning the value if it does and die ()-ing if it doesn’t. Here it is again:

059 sub Assign {

060 my ($self, $symbol, $value) = @_;

061

062 if (defined(my $ref = $self->_lookup_ref ($symbol))) {
063 $$ref = $value;

064 } else {

065 die "no binding for @{[$symbol->value]}",

066 " in @{[ref($self)]}\n";

067 }

068 }

So all we have to do is wire it up. The process of creating new special forms should be familiar by now.
Firstly we subclass PScm::SpecialForm and give our new class an Apply () method. The new class
in this case is PScm::SpecialForm::Set. Its Apply () method as usual takes a form and the current
environment as arguments. In this case the form should contain a symbol and a value expression. This
Apply () will evaluate the expression and call the environment’s Assign() method with the symbol and
resulting value as arguments:

138 package PScm::SpecialForm: :Set;
139
140 use base qw(PScm::SpecialForm);

141

142 sub Apply {

143 my ($self, $form, $env) = @_;

144 my ($symbol, $expr) = $form->value;

145 $env->Assign($symbol, $expr->Eval($env));
146 }

And that’s all there is to it, apart from adding a PScm::SpecialForm::Set object to the initial envi-
ronment, bound to the symbol set!.

126 CHAPTER 10. SIDE EFFECTS

10.3 Sequences

Sequences are another fairly trivial addition to the language. Rather than a single expression, a sequence
contains zero or more expressions. Each expression is evaluated in order, and the value of the last
expression is the value of the sequence. The value of an empty sequence is null, the empty list. This is
such a common thing in many other languages (such as Perl) that it goes without notice, but thinking
about it, sequences only become relevant and useful in the presence of side effects. Since only the value
of the last expression is returned, preceding expressions can only affect the computation if they have side
effects.

The keyword introducing a sequence in PScm is begin. begin takes a list of zero or more expressions,
evaluates each one, and returns the value of the last expression, or null if there are no expressions to
evaluate. It functions something like a block in Perl, except that a Perl block also encloses a variable
scope like 1let does, but begin does not imply any scope.

(begin <expressionl> <expression2> ...)

With begin, we can write that rather awkward set! example from the previous section a lot more
clearly:

> (let ((a 5))

> (begin

> (set! a 10)
> a))

10

begin could, in fact, be implemented as a function, provided that functions are guaranteed to evaluate
their arguments in left-to-right order, as this implementation does. However it is safer not to make that
assumption (remember the networked language where evaluation was envisaged in parallel,) so begin is
better implemented as a special form which can guarantee that left to right behaviour.

As might be imagined the code is quite trivial: evaluate each component of the form and return the
last value. We pick as an initial value the empty list, so that if the body of the begin is empty, that is
the result. As usual we subclass PScm::SpecialForm, in this case to PScm::SpecialForm::Begin,
and give the new class an Apply () method:

149 package PScm::SpecialForm: :Begin;

150

151 use base qw(PScm::SpecialForm);

152

153 sub Apply {

154 my ($self, $form, $env) = Q_;

155 my (Q@expressions) = $form->value;
156

157 my $ret = new PScm::Expr::List();
158

159 while (@expressions) {

160 $ret = shift(@expressions)->Eval($env);
161 }

162

10.4. SUMMARY 127

163 return $ret;
164 }

165

166 1;

On Line 155 it extracts the expressions from the argument $form. Then on Line 157 it initialises the
return value $ret to an initial value. On Lines 159-161 it loops over each expression, evaluating it in the
current environment, and assigning the result to $ret, replacing the previous value. Lastly on Line 163
it returns the final value.

10.4 Summary

In this section we’ve seen variable assignment added to the language, but also taken some time to consider
some drawbacks of that feature. We’ve also looked at how sequences become useful in the presence of
variable assignment. In fact sequences serve no purpose without side-effects and side-effects are difficult
to do without sequences.

As usual we need to add our new forms to the interpreter by binding them in the initial environment.
Here’s ReadEvalPrint () with the additional bindings.

031 sub ReadEvalPrint {

032 my ($infh, $outfh) = @_;

033

034 $outfh ||= new FileHandle(">-");

035 my $reader = new PScm::Read($infh);

036 while (defined(my $expr = $reader->Read)) {

037 my $result = $expr->Eval(

038 new PScm: :Env(

039 let => new PScm::SpecialForm::Let(),
040 2k => new PScm::Primitive: :MultiplyQ),
041 1) => new PScm: :Primitive::Subtract(),
042 if => new PScm: :SpecialForm::If(),

043 lambda => new PScm::SpecialForm::Lambda(),
044 list => new PScm::Primitive::List(),

045 car => new PScm::Primitive::Car(),

046 cdr => new PScm::Primitive::Cdr(),

047 cons => new PScm::Primitive::Cons(),

048 letrec => new PScm::SpecialForm::LetRec(),
049 >let*’ => new PScm::SpecialForm: :LetStar(),
050 eval => new PScm::SpecialForm::Eval(),
051 macro => new PScm::SpecialForm::Macro(),
052 quote => new PScm::SpecialForm::Quote(),
053 ’set!’ => new PScm::SpecialForm::Set(),
054 begin => new PScm::SpecialForm::Begin(),
055)

056);

057 $result->Print ($outfh);

128 CHAPTER 10. SIDE EFFECTS

058 }
059 }

It’s worth pointing out a major difference between PScheme and standard scheme implementations here.
In standard scheme, function bodies and the bodies of 1let expressions and their variants are all implicit
sequences. So in fact in a real scheme implementation you could just write:

> (let ((a 5))

> (set! a 10)
> a)
10

In PScheme function and let bodies are single statements and require an explicit begin to create a
sequence, because I wanted to keep the distinction between single expressions and sequences clear to the
reader.

10.5 Tests

A test of set! and begin can be seen in Listing 10.6.1 on the facing page. The test binds a to 1 in a
let, then in the body of the let it performs a begin which set!s a to 2 then returns the new value of
a.

10.6. LISTINGS 129

10.6 Listings

10.6.1 +t/PScm_SideEffects.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1ib ’t/lib’;

005 use PScm::Test tests => 2;
006

007 BEGIN { use_ok(’PScm’) }
008

009 eval ok(<<EQOF, ’2’, ’begin and assignment’);
010 (let ((a 1))

011 (begin (set! a 2)

012 a))

013 EOF

014

015 # vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.0.7.tgz

130 CHAPTER 10. SIDE EFFECTS

Chapter 11

define

And so to define. define is another type of side effect. It differs from set! in that it is not an error
if the symbol does not exist, and it differs also in that the binding is always installed in the current
environment. Therefore executing define at the top level prompt will install the binding in the global
environment.

11.1 Environment Changes

Code that manipulates environments is best defined in the environment package PScm::Env, and that’s
what we do. The additional method in PScm::Env is called, unsurprisingly, Define() and it’s very
simple.

131 sub Define {

132 my ($self, $symbol, $value) = Q_;

133

134 $self->{bindings}{ $symbol->value } = $value;
135 return $symbol;

136 }

It takes a symbol and a value (already evaluated) as arguments. On Line 134 it directly adds the binding
from the symbol to the value, reguardless of any previous value, and on Line 135 it returns the symbol
being defined, to give the print system something sensible to print.

11.2 The define Special Form

Now we need to follow the usual procedure to add another special form to the language: we subclass
PScm::SpecialForm and give our new class an Apply () method. In this case the new class is called
PScm::SpecialForm::Define.

167 package PScm::SpecialForm: :Define;
168

169 use base qw(PScm::SpecialForm);
170

171 sub Apply {

131

132 CHAPTER 11. DEFINE

172 my ($self, $form, $env) = Q_;

173 my ($symbol, $expr) = $form->value;

174 $env->Define ($symbol, $expr->Eval($env));
175 }

176

177 1;

All it does is on Line 173 it extracts the symbol and the expression from the argument $form then
on Line 174 it calls the Define() environment method described above with the symbol and evaluated
expression (value) as argument.

11.3 Persistant Environments

There is one more change to make. In order for define to be effective from one expression to another,
it no longer makes sense to create a fresh environment for each expression to be evaluated in, as Read-
EvalPrint () has done so far, because that would eradicate the effect of any define performed by
a prior expression. The solution is of course trivial, we create the initial environment outside of the
read-eval-print loop itself, and pass it to each top-level Eval():

031 sub ReadEvalPrint {

032 my ($infh, $outfh) = @_;

033

034 $outfh ||= new FileHandle(">-");

035 my $reader = new PScm::Read($infh);

036 my $initial_env = new PScm: :Env(

037 let => new PScm::SpecialForm::Let(),
038 2% => new PScm::Primitive::Multiply(),
039) => new PScm: :Primitive::Subtract(),
040 if => new PScm: :SpecialForm::If(),

041 lambda => new PScm::SpecialForm::Lambda(),
042 list => new PScm::Primitive::List(),

043 car => new PScm::Primitive::Car(),

044 cdr => new PScm::Primitive::Cdr(),

045 cons => new PScm::Primitive::Cons(),

046 letrec => new PScm::SpecialForm: :LetRec(),
047 ’let*’ => new PScm::SpecialForm: :LetStar(),
048 eval => new PScm::SpecialForm::Eval(),
049 macro => new PScm::SpecialForm::Macro(),
050 quote => new PScm::SpecialForm::Quote(),
051 ’set!’ => new PScm::SpecialForm::Set(),
052 begin => new PScm::SpecialForm: :Begin(),
053 define => new PScm::SpecialForm::Define(),
054);

055

056 while (defined(my $expr = $reader->Read)) {

057 my $result = $expr->Eval($initial_env);

11.4. TESTS 133

058 $result->Print ($outfh);
059 }
060 }

Now we can actually write some of the earliest examples from this book in the language at hand.

> (define factorial

> (lambda (x)

> (if x

> (* x (factorial (- x 1)))
> DN

factorial

> (factorial 4)

24

The factorial function was chosen to demonstrate that closures created by define can call themselves
recursively. After all, the environment they capture must, by virtue of how define operates, contain a
binding for the closure itself.

define can be used for other things too. Because of the simple semantics of the PScheme language,
define is perfectly suited for creating aliases to existing functions. For instance if a programmer doesn’t
like the rather obscure names for the functions car and cdr, they can provide aliases:

> (define first car)
first

> (define rest cdr)

rest

> (first (list 1 2 3 4))
1

> (rest (list 1 2 3 4))
(2 3 4)

These are completely equivalent to the original functions except in name. The primitive definitions are
bound to the new symbols first and rest in the top level environment exactly as they are still bound
to their original symbols.

11.4 Tests

Tests for define can be seen in Listing 11.5.1 on the next page. The first test demonstrates global
definition, and also that closures bound by define are naturally capable of recursion since define
assigns them in the current environment. The second test shows that define can be used in any
environmental context, even in the body of a closure, to create new bindings. This second test is quite
interesting because it demonstrates a function that creates a “helper” function (h) that is only visible to
the containing times2 closure.

134 CHAPTER 11. DEFINE

11.5 Listings

11.5.1 +t/PScm_ Define.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1ib ’t/1lib’;

005 use PScm::Test tests => 3;
006

007 BEGIN { use_ok(’PScm’) }

008

009 eval ok (<<EQOF, <<E0X, ’global definition’);
010 (define square

011 (lambda (x) (* x x)))
012 (square 4)

013 EOF

014 square

015 16

016 EOX

017

018 eval_ok(<<EQF, <<E0X, ’local definition’);
019 (define times2

020 (lambda (x)

021 (begin

022 (define h

023 (lambda (k)
024 -k (- kDN
025 (h x))))

026 (times2 5)

027 EOF

028 times?2

029 10

030 EOX

031

032 # vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.0.8.tgz

Chapter 12

Classes and Objects

Almost every modern programming language has an object-oriented extension or variant available. Some
languages, such as SmallTalk and Ruby are “pure” OO languages in that everything in the language is
an object!. Other languages such as Perl and this PScheme implementation add OO features to what is
essentially a procedural core.

Every object implementation has its peculiarities. There are a lot of trade-offs and choices to be
made. Most of these differences come down to issues of visibility of object components from other parts
of a program: should the fields of an object be visible at all outside of that object? Should an object
be able to see the fields in an object it inherits from? Should an object of a particular class be able to
see fields of another object of the same class? Should certain methods of an object be hidden from the
outside world? from its descendants?

The implementation discussed here makes choices in order to leverage existing code. Those choices
result in a particular OO “style”. I've also decided, somewhat perversely, to be as different from the Perl
5 object implementation as possible within the constraints imposed, in order to give the reader a sense
of the different choices that are available.

12.1 Features of this implementation
Rather than listing the features up front, let’s start off with some examples of the extension in action,
showing its syntax etc. We can pick up the semantics as we go along.

First of all a new special form called make-class creates a new class. It returns that new class as its
value. The syntax of make-class is:

(make-class (parent-expression) ((field) ...) (method) ...)

(parent-expression) is an expression evaluating to another class. Each (field) is a symbol naming one of
the object’s fields. Each (method) has the form:

f you don’t know SmallTalk, you might be surprised at how far that statement goes. Not only are the simple numeric
and string data types objects, but arrays, hashes (called Dictionaries), booleans, code blocks, exceptions and even classes
are objects in SmallTalk. Furthermore even the simplest operations such as addition are methods: adding 2 + 2 involves
sending the object 2 the message + with argument 2, and conditional expressions like if are implemented by sending a
boolean object representing the condition a message ifTrue with argument the code block to execute if the condition is
true. See [9] if you want more information.

135

136 CHAPTER 12. CLASSES AND OBJECTS

((name) ({(arg) ...) (body))

where (name) is the name of the method, the (arg)s are the arguments, and (body) is the body, much like
lambda expressions. Also, somewhat like lambda expressions, but not identically, method bodies capture
the lexical environment current when the class is created.

The system provides a pre-built root class to act as a starting point for any class hierachy. That class
is bound to the symbol root.

So here is how we might create a crude “bank account” class:

(define Account
(make-class
root
(balance)
(init (amount) (set! balance amount))
(deposit (amount) (set! balance (+ balance amount)))
(withdraw (amount) (set! balance (- balance amount)))
(balance () balance)
(clone () (class balance))))

make-class returns the new class, and we bind that to the symbol Account with define.

Our new Account descends directly from the root class. It has a single balance field, and five
methods called init, deposit, withdraw, balance and clone. Note that there is no conflict between
the field called balance and the method of the same name: methods exist in a separate namespace.

The init method is special. It will get called whenever a new object is created. It should normally
assign values to the object’s fields, since they initially all have a value of zero.

We’ll come back to that clone method in a bit.

Creating instances of Account simply involves invoking the Account class with whatever arguments
its init method takes. It will return an object of class Account, suitably initialised:

(define my-account (Account 20))

This creates an object of class Account with an initial balance of 20, since init assigns the argument
20 to the balance field. define binds the new object to the symbol my-account.

This starts to explain that mysterious clone method. All methods have access to a special variable
called class, that refers to the class of the object; this has some parallels with the Perl __PACKAGE__
identifier. So clone need only call (class balance) to create a copy of the current object.

To call a method on an object you invoke the object, with the method name as the first argument
and arguments to the method itself as the remaining arguments:

(my-account deposit 10)

The deposit method takes the argument 10 and adds it to the existing balance.

12.1.1 Inheritance

Classes and objects wouldn’t be much fun without inheritance, so here’s an example of a derived class:

12.1. FEATURES OF THIS IMPLEMENTATION 137

(define InterestAccount
(make-class
Account
(rate)
(init (interest amount)
(begin (super init amount)
(set! rate interest)))
(accumulate ()
(this deposit (* (this balance) rate)))))

Note a few things in particular.
e The parent class in this case is Account, the class we created previously.
e The InterestAccount class adds an extra field, rate.

e The InterestAccount’s init method, before setting the new object’s rate to interest, invokes
the parent’s init method with the call (super init amount) to set the balance. This is more
or less equivalent to the Perl SUPER method qualifier:

$self->SUPER: :init ($amount) ;

The super object is an implicit field of the class, and is automatically initialised when an object is
created. It represents the parent object.

e The special variable this is an implicit argument to methods, it represents the object on which
the method was originally invoked, just as $self conventionally does for perl methods?.

e The InterestAccount class cannot see its parent’s fields, only its methods. It has to call (this
balance) to get the value of balance and (this deposit (arg)) to change it.

e Methods are always called from an object. There are no shorthands. Even within a method body it
is necessary to use one of the special objects this or super to call a method on the current object.

The InterestAccount class can be used as follows:

> (define my-account (InterestAccount 20 2))
my-account

> (my-account deposit 10)

30

> (my-account balance)

30

> (my-account accumulate)

90

> (my-account balance)

90

Quite a nice rate of interest that is.

2We could have chosen the name self instead, to make the examples easier for perl programmers to read, but the perl
under the hood might start to get ugly.

138 CHAPTER 12. CLASSES AND OBJECTS

12.1.2 Class Variables and Methods

Although there is no direct support for class variables and methods, the fact that classes, and hence
methods, capture the current environment allows us to fake them. Here’s a variant on the Account class
that keeps track of the total amount of money in all account objects:

(define Account
(let ((total 0))
(make-class
root
(balance)
(set-balance (op amount)
(begin (set! balance (op balance amount))
(set! total (op total amount))))
(init (amount) (this set-balance + amount))
(deposit (amount) (this set-balance + amount))
(withdraw (amount) (this set-balance - amount))
(balance () balance)
(total () total))))

The let binds total to an initial value of O then evaluates the make-class construct in this new
environment. The newly created class captures that environment. That new class is then returned by
the let expression and bound to Account.

Every instance of Account will share the lexically scoped variable total. Rather than change each
of init, deposit and withdraw to individually maintain both the value of total and balance, a new
method set-balance has been added. It takes an operation op (+ or -) and an amount and applies
the operation with the amount separately to both the balance and the total. The init, deposit
and withdraw methods have been modified to use this new method, and another new method, total,
provides read-only access to the value of total.

12.1.3 super Calls

We’re not quite finished with the details. There’s one last wrinkle to deal with reguarding that super
object mentioned earlier. Although on the surface it may appear to behave just like any other object, a
call to a method on the super object cannot just be a simple method invocation. If it was, then this in
the called method would be the object referred to by super in the calling method. Instead the this in
the called method should continue to refer to the this that was current before the super call. To make
that clear, consider a rather contrived example:

> (define cat

> (make-class

> root

> O

> (poke () (this respond))
> (respond () ’purr)

>))

cat

> (define lion

12.2.

V V V V V V

lion

IMPLEMENTATION 139

(make-class
cat
O
(poke () (super poke))
(respond () ’roar)

))

> (define leo (liom))

leo

> (leo poke)

roar

leo is an instance of 1ion and the call (leo poke) invokes lion’s poke method.
lion’s poke method does (super poke), which invokes cat’s poke method.

cat’s poke method does (this respond) but since, even after the super call, this is still the
originating object leo of class lion, it is 1ion’s respond method that gets invoked, resulting in
“roar” rather than the “purr” from cat’s respond method.

12.1.4 Feature Summary

Here’s a summary, then, of the main features of our implementation

There is no multiple inheritance.

There are no class variables or methods, but the capture of the lexical environment by a class
definition allows us to fake them.

Only methods are inherited: fields are visible only to methods of the class in which they are defined.
Fields behave like normal variables within method bodies.

The special variable this is always available as an implicit argument to each method and refers to
the object that the method was originally invoked on.

The special variable super is always available as an implicit field of every object and refers to the
parent object of the object that owns the method.

Calling a method on the super object passes this, not super, as the implicit object argument to
the called method.

The special variable class is always available as an implicit field in every object and refers to the
class of the object.

12.2 Implementation

So how do we go about implementing this extension? Well, to be frank, in a fairly ad hoc way. It
should be obvious that PScheme objects have a lot in common with environments, namely that they
store the values of variables. Our existing environment implementation can easilly be pressed in to

140 CHAPTER 12. CLASSES AND OBJECTS

service as a PScheme object. In fact in this implementation objects are environments, or rather, chains
of environments linked via a super field where each individual environment represents an instance of the
equivalent class in the class hierachy.

We need only add a couple of methods to our existing environment implementation to get all we
need.

e The first of those new PScm::Env methods would of course be an Apply (), since now environ-
ments are exposed in the language as objects and are invoked as operators: ({object) (method)

(arg)...).

e The second method we’ll need is some sort of lookup method() method because we’ve said that
PScheme methods live in a separate namespace from normal fields. We can always recognise
PScheme method invocation and hence the PScheme method name by context: it is always the
first “argument” to an object. We cheat egregiously here and just use the class binding in each
PScheme object to locate the PScheme class, and check to see if the PScheme method is in it. If
not found then lookup method() recurses down the chain of objects via the super binding and
tries again.

Of course we need an object to represent PScheme classes, but that is just going to contain the parent
PScheme class, the fields and methods of the class, and the environment that was current at the point
of its creation. That nascent PScheme Class package will need an Apply() method that will create
PScheme objects on demand, passing any arguments to that object’s nearest init method.

That is pretty much all we need to do. Methods can act just like closures but will extend the
environment representing the object when they are called. There are a few fiddly details around method
invocation on a super object, but we’ll deal with that later.

12.2.1 Class Creation with make-class

Starting from the top, the special form (make-class (parent-ezpr) ((field)...) (method)...) is
simple to implement, it just returns an instance of that yet to be described PScm::Class object. Hope-
fully it’s not too counterintuitive that PScheme classes are in fact Perl objects. Here’s the implementation
of make-class in a new PScm::SpecialForm::MakeClass package:

178 package PScm::SpecialForm: :MakeClass;
179

180 use base qw(PScm::SpecialForm);

181

182 sub Apply {

183 my ($self, $form, $env) = @_;

184

185 my $parent_expr = $form->first;

186 my $fields = $form->rest->first;

187 my $methods = $form->rest->rest;

188 my $parent_class = $parent_expr->Eval($env);
189 return PScm::Class->new($parent_class,

190 $fields,

191 $methods,

192 $env) ;

12.2. IMPLEMENTATION 141

193 }
194
195 1;

As is usual for a special form it just has an Apply() method. On Line 185 that unpacks the parent
expression, fields and methods from the argument $form, and on Line 188 it evaluates the parent expres-
sion in the current environment to get an actual parent class (PScm::Class) object. Finally on Line
189 it returns a new instance of PScm::Class capturing those values and the current environment.
The new() method in PScm::Class doesn’t do anything too clever either, On Line 10 it declares a
hashref $rh methods, and then on Line 11 it calls a helper static method _populate methods_hash()
which will chop up the PScheme methods into names, arguments and bodies, storing each pair of args
and body in the hash keyed on the PScheme method name. Then starting on Line 13 it returns a new
instance containing that hash along with the parent PScheme class, fields and current environment:

007 sub new {

008 my ($class, $parent, $fields, $methods, $env) = @_;
009

010 my $rh_methods = {};

011 $class->_populate_methods_hash($rh_methods, $methods);
012

013 return bless {

014 parent => $parent,

015 fields => [$fields->value],

016 methods => $rh_methods,

017 env => $env,

018 }, $class;

019 }

Here’s _populate methods hash():

021 sub _populate_methods_hash {

022 my ($class, $rh_methods, $methods) = @_;

023 if ($methods->is_pair) {

024 my $method = $methods->first;

025 my ($name, $args, $body) = $method->value;

026 $rh_methods->{ $name->value } =

027 { args => $args, body => $body };

028 $class->_populate_methods_hash($rh_methods, $methods->rest);
029 }

030 }

That’s it for make-class. Following our previous course, we next need to look at PScheme object
creation, which occurs when a PScheme class is invoked with arguments intended for its init method:
({class) (arg)...).

12.2.2 Object Creation

It’s probably worth stepping back at this stage to clarify how our environments will be arranged into
objects. As I've already mentioned each PScheme object (environment) extends the environment that

142 CHAPTER 12. CLASSES AND OBJECTS

was captured by its class. Furthermore each PScheme object (environment) has a super field referring
to the anonymous PScheme object created by its parent PScheme class.
That means we end up with a situation something like Figure 12.1

Figure 12.1: Notional object structure

PScm::Env

PScm::Env
super [

Y

PScm::Env

super [

N

Y

Although this figure does not tell the whole story, it at least emphasizes that a PScheme object consists
of a number of environment frames, one for each class in the equivalent PScheme class hierachy, but those
environment frames are connected not by a direct parent/child relationship but via an ordinary variable
in each frame called super. The environment frames representing each object extend the environment
that their respective classes captured. This is implied, but not shown, by the unterminated arrows in
the figure.

So we were about to take a look at how PScheme classes create PScheme objects. Classes create
objects when they are invoked as ({class) (arg)...). To make anything invokeable we just need give
it an Apply () method, and here’s the one for PScm::Class:

032 sub Apply {

033 my ($self, $form, $env) = @_;

034

035 my $new_object = $self->make_instance();

036 $new_object->call_method($new_object, "init", $form, $env);
037 return $new_object;

038 }

On Line 35 it calls a make_instance() method to create a new PScheme object (really a PScm::Env).
Then on Line 36 it calls the PScm init method of the new object. This is done using a call method ()
method of PScm::Env. This takes the PScheme object on which the method is being invoked ($new_-
object, which will be passed to the PScheme method as this), the name of the PScheme method
("init"), and the arguments to the method itself ($form and $env.) We'll look at call method() later.

The make_instance () method of PScm::Class must recurse down to the root of the PScheme class
hierachy, creating a chain of anonymous PScheme objects on the way back up, each linked to its parent
by a super field. Here it is:

040 sub make_instance {

041 my ($self) = Q_;
042
043 my $parent_instance = $self->{parent}->make_instance();

044

12.2.

045
046
047
048
049
050
051
052
053
054
055
056

057 }

IMPLEMENTATION

return $self->{env}->ExtendUnevaluated(
new PScm: :Expr::List(
PScm: :Expr: :Symbol->new("class"), # $self
PScm: :Expr: :Symbol->new("super"), # $parent_instance

o{ $self->{fields} }, #0...
),
new PScm: :Expr::List(
$self, # "class"
PScm: :Env: :Super->new(super => $parent_instance), # "super"
((PScm: :Expr: :Number->new(0)) x @{ $self->{fields} }), # field...
)

);

143

The first thing it does, on Line 43 is to call its parent PScheme class’ make_instance() method to get
an instance of its parent class. Then starting on Line 45 the rest of the method extends the environment
that the PScm::Class object captured when it was created, with appropriate bindings from class to
$self, super to the $parent_instance and from each of the PScheme classes fields to initial values
of zero. It is this new environment that is returned by make_instance().

If you were reading the above code carefully, you’d have noticed that the super field does not link
directly to the parent instance, but via a derivative of PScm::Env called PScm::Env::Super. This is
so that the super object can have a separate Apply () method. That gives the lie to our simple picture
of environments-as-objects in Figure 12.1 on the preceding page. In fact the true situation is shown in
Figure 12.2.

Figure 12.2: Real object structure

super object

root object

PScm::Env::super

Y

PScm::Env

super [] >

class []

<_ <_

. T

PScm::Class

\d

env [} PScm::Class::Root

parent [>

env [;

method [)
S

144 CHAPTER 12. CLASSES AND OBJECTS

To keep things simple this figure only shows an object whose immediate parent is root. You can see that
the PScheme object is joined to its parent via a PScm::Env::Super object bound to its super field,
and that the PScm::Env::Super object also has a super field providing the link to the real parent.
Additionally each PScheme object has a class binding referring to the PScheme class that created it.
That is a PScm::Class for all but the root object, which has no super binding and has a class binding
that refers to a PScm::Class::Root object. PScm::Class::Root is a derivative of PScm::Class, and
it is a PScm::Class::Root instance that will be bound to root in the initial environment.

That conveniently brings us back round to the make_instance () method, and how that recursive call
to the parent PScheme class’ make_instance() is terminated. That happens when it hits the make -
instance () method of the PScm::Class::Root package, shown next.

o70 package PScm::Class::Root;

071
072 use base qw(PScm::Class);
073

o074 sub new {

075 my ($class, $env) = O_;
076

077 return bless {

078 parent => O,

079 fields => [1,

080 methods => {},

081 env => $env,
082 }, $class;

083 }

084

085 sub make_instance {

086 my ($self) = @_;

087

088 return $self->{env}

089 ->ExtendUnevaluated(
090 new PScm::Expr::Symbol("class"),
091 $self

092)

093 }

094

095 1;

The new() method on Lines 74-83 is just meant to be easy to call from the repl where the root class
will be initialised. It creates a PScheme class with no parent, no fields, no methods, and whatever env
is passed in®.

The make_instance () method on Lines 85-93 is not recursive, it just extends the captured environ-
ment with a binding of class to $self (the PScm::Class::Root object,) returning the result. Note

3It’s actually redundant for that root environment to have a class binding or a parent environment, since the root class
currently has no methods. However if we did want to extend the implementation to add generic methods to the root class
then all the pieces we need are in place, so we can accept that redundancy for now.

12.2. IMPLEMENTATION 145

that it takes advantage of the fact that ExtendUnevaluated() can cope with a single symbol and value
as well as lists of the same.

12.2.3 init Method Invocation

So far we’'ve looked at how PScheme classes are created and how they in turn create PScheme objects.
Next we’re going to look at how PScheme methods are invoked, starting with the init method.

If you remember, the PScheme init method is called by PScm: :Class: :Apply() when creating a
new object, by calling call method() on the instance $new_object returned by PScm: :Class: :make_-
instance(). Since $new_object is a PScm::Env, call method() must be a method of PScm::Env,
and here it is.

168 sub call_method {

169 my ($self, $this, $method_name, $args, $env) = @_;

170

171 if (my $method = $self->_lookup_method($method_name)) {
172 return $method->ApplyMethod($this, $args, $env);
173 }

174 }

call method() is passed both the “real” perl object $self and the object representing PScheme’s idea
of the current object, $this, that the PScheme method is being invoked on. Normally these are one and
the same. Additionally it is passed the method name, arguments and another environment in which the
arguments are to be evaluated if a method is found. On Line 171 it uses _lookup method() (discussed
next) to find the method, and if found then on Line 172 it invokes the PScheme method by calling its
ApplyMethod () and returns the result. If no method can be found it returns undef, and since in the
case of PScm::Class’ Apply () the result of calling init is discarded anyway, it is not fatal if an init
method is not found.

_lookup-method() employs a simple strategy to locate a method. First it checks in the current
PScheme object’s class, and if it can’t find the method there, it recurses to its super object. That leads
to the equally simple definition below.

136 sub _lookup_method {

137 my ($self, $method_name) = @_;

138

139 return $self->_lookup_method_here($method_name)

140 || $self->_lookup_method_in_super ($method_name) ;
141 }

So _lookup -method() breaks down into two simpler methods: _lookup method here() and _lookup_-
method_in_super (), which it tries in turn. _lookup_method here() is similarily simple.

143 sub _lookup_method_here {

144 my ($self, $method_name) = @_;

145

146 if (exists $self->{bindings}{class}) {
147 return $self->{bindings}{class}

148 ->get_method ($method_name, $self);

146 CHAPTER 12. CLASSES AND OBJECTS

149 }
150 }

It checks to see if the current object has a class binding, and if so it calls get_method () on the class,
returning the result. get method() will return undef if it can’t find the method in the class, and
_lookup-method_here() returns undef if there is no class binding.

_lookup method_in_super () is equally simple.

152 sub _lookup_method_in_super {

153 my ($self, $method_name) = @_;

154

155 if (exists $self->{bindings}{super}) {
156 return $self->{bindings}{super}
157 ->_lookup_method ($method_name) ;
158 }

159 }

It checks to see if the current PScheme object has a super, and if so it calls _lookup_method() on it.
Otherwise it returns undef.

Since _lookup method(), lookup_method here() and _lookup method_in_super() are all methods
of PScm::Env, they are all available to PScm::Env::Super where they work without modification:
super objects have a super field but no class field.

Going back to _lookup method_here(), if that found a class binding, it called get method() on the
PScheme class, passing it the method name to look for, and perhaps less obviously, $self as well. Here’s
what get method () back in PScm::Class does with those arguments.

059 sub get_method {

060 my ($self, $method_name, $object) = @_;

061

062 if (exists $self->{methods}{$method_name}) {

063 return PScm::Closure: :Method->new(

064 $self->{methods}{$method_name}{args},

065 $self->{methods}{$method_name}{body}, $object);
066 }

067 }

On Line 62 it looks in its methods subhash for a key matching the string $method _name. If it finds one it
knows it has found the method and returns a new instance of PScm::Closure::Method, a closure just
like a lambda expression, containing the relevant method args and method body from the subhash, and
most importantly capturing the environment $object. Reasoning backwards, this is correct, $object
(the $self from _lookup method_here()) is the environment in which the method was found, (via class)
and that is the environment that the method should extend when it executes, so that the method body
can “see” the fields of the object.

I’d just like to emphasize a point here, the object $object passed to get_method() is not necessarily
the same as the this that will be passed to the method when it executes. That would only be true if
the method was found in the first PScheme object that _1ookup_method() looked in.

There’s very little left to cover now. We just need to take a look at PScm::Closure::Method. This
is a subclass of PScm::Closure, as you can see.

12.2. IMPLEMENTATION 147

067 package PScm::Closure: :Method;

068
069 use base qw(PScm::Closure);

070

071 sub new {

072 my ($class, $args, $body, $env) = @_;

073

074 bless {

075 args => PScm: :Expr::List->Cons(

076 PScm: :Expr: :Symbol->new("this"), $args
077),

078 body => $body,

079 env => $env,

080 }, $class;

08t }

082

083 sub ApplyMethod {

084 my ($self, $this, $form, $env) = @_;

085 my $evaluated_args = $form->map_eval ($env);
086 return $self->_apply(PScm: :Expr::List->Cons($this, $evaluated_args));
087 }

088

089 1;

The new() method on Lines 71-81 is the one we just saw being called by get_method (). What differen-
tiates it from the normal PScm::Closure::Function new() method is that on Line 75 it prepends the
symbol this to the argument list as it constructs the closure. That “implicit” argument will be supplied
by ApplyMethod () which you can also see in this package.

The defining feature of a closure is that it captures an environment when it is created and extends it
when it is executed. These method closures are no different, but the environment that they capture is
the object in whose class the method was found. Hence method bodies can see the fields of the object
as normal variables: they are normal variables.

ApplyMethod () also behaves pretty much like the normal closure’s Apply (), but it differs in having
an extra $this argument. On Line 85 it calls map_eval() on the argument $form with the current
environment to get a list of evaluated arguments, just as the normal closure’s Apply () does. But then
on Line 86 it prepends $this (the PScheme this) to those actual arguments when calling the generic
PScm::Closure _apply () method. This ties in with the new() method having supplied an extra symbol
this to the list of formal arguments.

We’ve now covered everything to do with PScheme object creation and initialisation in PScheme. Along
the way we’ve seen, by following the process of calling an object’s init method, most of the machinery
behind method invocation. There are only two remaining details to fill in.

148 CHAPTER 12. CLASSES AND OBJECTS

12.2.4 General Method Invocation

The first of those is normal PScheme method invocation. That is done by invoking the object with the
method name and arguments, for example:

(my-account deposit 10)

Since objects (environments) are now directly invokeable, they too must have an Apply () method, shown
here:

176 sub Apply {

177 my ($self, $form, $env) = Q@_;

178

179 my ($method_symbol, $args) = ($form->first, $form->rest);
180 my $res =

181 $self->call_method($self, $method_symbol->value, $args, $env);
182

183 if (defined $res) {

184 return $res;

185 } else {

186 die "method ", $method_symbol->value, " not found\n";
187 }

188 }

On Line 179 it splits the argument $form into a method name (a symbol) and a list of arguments to the
method. Then on Line 181 it attempts to call the method, and collects the result. Now the result will
only be undefined if a method could not be found, in which case an exception is raised. Otherwise the
result is returned.

12.2.5 super Method Invocation

The only remaining piece is invocation of a PScheme method on a super object. super is bound to
a PScm::Env::Super instance, which in turn has a super binding referring to the next object in the
chain. Here’s PScm::Env::Super:

191 package PScm::Env::Super;

192

193 use base qw(PScm::Env);

194

195 sub Apply {

196 my ($self, $form, $env) = @_;

197

198 my ($method, $args) = ($form->first, $form->rest);

199 my $this = $env->LookUp(PScm: :Expr: :Symbol->new("this"));
200 my $res =

201 $self->call_method($this, $method->value, $args, $env);
202

203 if (defined $res) {

12.2. IMPLEMENTATION 149

204 return $res;

205 } else {

206 die "method ", $method->value, " not found in super\n";
207 }

208 }

209

210 1;

If you compare the Apply () method here with the one in PScm::Env above, you can see they differ in
that on Line 199 the Apply() looks up this in the current environment. Then on Line 201 it passes
$this instead of $self to call method(). The upshot of that is the variable $this will be the one that
gets bound to the implicit this argument to the PScheme method when it is invoked.

12.2.6 Wiring it up

And finally, we just need to see how the new object code is wired into the repl. Here’s ReadEvalPrint ()
for version 0.0.9 of our interpreter.

032 sub ReadEvalPrint {

033 my ($infh, $outfh) = @_;

034

035 $outfh ||= new FileHandle(">-");

036 my $reader = new PScm::Read($infh);

037 my $initial_env = new PScm::Env(

038 let => new PScm::SpecialForm::Let(),
039 % => new PScm::Primitive::Multiply(),
040) => new PScm: :Primitive::Subtract(),
041 4 => new PScm::Primitive::Add(),

042 if => new PScm::SpecialForm::If(),

043 lambda => new PScm::SpecialForm: :Lambda(),
044 list => new PScm::Primitive::List(),

045 car => new PScm::Primitive::Car(),

046 cdr => new PScm::Primitive::Cdr(),

047 cons => new PScm::Primitive::Cons(),

048 letrec => new PScm::SpecialForm: :LetRec(),
049 Ylet*’ => new PScm: :SpecialForm: :LetStar(),
050 eval => new PScm::SpecialForm: :Eval(),
051 macro => new PScm::SpecialForm: :Macro(),
052 quote => new PScm: :SpecialForm::Quote(),
053 ‘set!’ => new PScm::SpecialForm::Set(),
054 begin => new PScm: :SpecialForm: :Begin(),
055 define => new PScm::SpecialForm: :Define(),
056 ’make-class’ => new PScm::SpecialForm::MakeClass(),
057)s

058

059 $initial_env->Define(

060 PScm: :Expr: :Symbol->new("root"),

150

061
062
063
064
065
066
067

068 }

CHAPTER 12. CLASSES AND OBJECTS

PScm: :Class: :Root->new($initial_env)

)

while (defined(my $expr = $reader->Read)) {
my $result = $expr->Eval($initial_env);
$result->Print ($outfh) ;

The changes are in bold. On Line 41 I finally caved in and added primitive addition as a builtin. I
leave it to the reader to do the same. On Line 56 you can see the additional binding of make-class to
a PScm::SpecialForm::MakeClass object, and on Line 59 we attach a new PScm::Class::Root to
the symbol root in the initial environment. That needs to be done using Define() because we need to
pass the value of $initial_env to the new() method of PScm::Class::Root

12.3 Summary and Variations

This object extension added new methods to PScm::Env to allow environments to behave as opera-
tors within the language. It added new classes PScm::SpecialForm::MakeClass to implement the
make-class special form, PScm::Class and PScm::Class::Root to host our PScheme class code,
PScm::Env::Super to provide an alternative Apply() method for super method invocation, and
PScm::Closure::Method for the modified closure behaviour of PScheme methods. To summarise:

A PScm::SpecialForm::MakeClass object bound to make-class in the initial environment cre-
ates instances of PScm::Class when called with arguments parent, fields and methods.

A PScm::Class::Root object bound to root in the initial environment provides a base class in
which other classes can be rooted.

PScm::Class has an Apply () method, and when a PScm::Class is invoked with arguments, that
Apply O method first creates a PScm object, which is in fact just an instance of a PScm::Env,
then calls that new object’s init method with the arguments that were passed to the class.

To create a new object (environment) PScm::Class’s Apply () calls make instance() which re-
curses down the chain of PScheme classes to the root and creates a chain of objects (environments)
on the way back up

— Each element of this chain has a class binding referring to the PScm::Class instance that
created it.

— Each element is joined indirectly to the previous by a super binding referring to a PScm::
Env::Super object which itself has a super binding referring to the actual parent object.

— Each object in the chain extends the environment that its class captured when it was created.

To call a PScheme method, init or otherwise, the call method() method of PScm::Env is used.
This uses _lookup_method() to locate the method and create an instance of PScm::Closure::
Method from it. If a method is found _call method() invokes the method’s ApplyMethod ().

12.4. TESTS 151

e _lookup method() looks first in the current environment for a class binding and if found checks
the class for the method, otherwise it recurses on the super field.

e Apply() in PScm::Env passes $self (the object on which the method is being invoked) as the
value of this to call method().

e The Apply() method of PScm::Env::Super instead looks up the value of this in the current
environment and passes that as the value of this to call_method.

e When a PScheme method is found in a PScheme class, the PScm::Class method get method()
creates an instance of PScm::Closure::Method, a closure which captures the environment (ob-
ject) in whose class the method was found, and which has an additional implicit self argument.

e When the method body is executed by PScm::Closure::Method’s ApplyMethod() the value of
this is passed as an additional argument.

Since the new PScm::Class has a file to itself there’s a full listing in Listing 12.5.1 on page 153.

To recap, let’s consider our original example classes: Account and InterestAccount
Figure 12.3 on the following page shows the situation after the creation of the Account and
InterestAccount classes, and the my-account instance of an InterestAccount that was discussed
in the examples in Section 12.1 on page 135.

You can see that the my-account object is really just a PScm::Env and its parent env is the global
environment (implied by the unterninated heavy arrows.) The my-account object’s parent environment
is the global environment because that is the environment that the InterestAccount class was created
in. If the InterestAccount class had captured a different environment, then that would have been the
one that instances of that class extended.

Note the three bindings in the my-account object. The rate variable is the one supplied by the class
definition, the other two, super and class are automatically provided by the implementation when new
objects are created.

The super variable refers to a PScm::Env::Super object, derived from PScm::Env, which in turn
has a super variable, and differs from PScm::Env only in its Apply() method, which arranges to
forward the current value of this (rather than the super object itself) to the called method.

The class variable refers to a PScm::Class object which contains field (variable) names, method
names along with their definitions, the environment that was current at the time of the creation of the
PScm::Class, and a parent field pointing at the parent PScheme class.

12.4 Tests

Tests for our OO extension are in Listing 12.5.2 on page 155.

The first test exercizes the creation of a class. The second test creates a class (our account class
from the examples above) then creates an object from it and calls a couple of its methods. The third
test uses the interest-account example that we’ve looked at to test inheritance. The fourth test
demonstrates that lexical variables outside of a class are visible to its methods and can therefore be used
as class variables. Finally, the fifth test uses an abstract form of that “leo” example to demonstrate
that method calls on a super object persist the current value of this.

152 CHAPTER 12. CLASSES AND OBJECTS

Figure 12.3: Example classes and objects

my-account
PScm::Env
interest-account
. rate 2 PScm::Env::Super |
PScm::Class super Py >
class super
fields: ¢ L P ® J
rate
methods: <
accumulate
init
env [) ¢
parent
PScm::Env
e
account amount 20 PScm::Env::Super |
PScm::Class super ° ™
class [] super [] J
fields: #-‘ S
amount
methods:
deposit <
withdraw
balance i
init
e e m
parent
class []
root PScm::Class:
:Root
env [)
S —

12.5. LISTINGS

12.5 Listings

12.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049

5.1 PScm/Class.pm

package PScm::Class;

use strict;
use warnings;
use base qw(PScm);

sub new {
my ($class, $parent, $fields, $methods, $env) = @_;
my $rh methods = {};
$class->_populate methods hash($rh methods, $methods);
return bless {
parent => $parent,
fields => [$fields->value],
methods => $rh methods,
env => $env,
}, $class;
}

sub _populate methods hash {
my ($class, $rh methods, $methods) = @_;
if ($methods->is_pair) {
my $method = $methods->first;
my ($name, $args, $body) = $method->value;
$rh methods->{ $name->value } =
{ args => $args, body => $body };
$class->_populate methods_hash($rh methods, $methods->rest);

}

sub Apply {

my ($self, $form, $env) = Q_;
my $new_object = $self->make_instance();
$new_object->call method($new_object, "init", $form, $env);
return $new_object;
}

sub make_instance {
my ($self) = @_;

my $parent_instance = $self->{parent}->make _instance();

return $self->{env}->ExtendUnevaluated(
new PScm::Expr::List(
PScm: :Expr: :Symbol->new("class"), # $self
PScm: :Expr: :Symbol->new("super"), # $parent_instance
o{ $self->{fields} }, #0...

153

154 CHAPTER 12. CLASSES AND OBJECTS

050),

051 new PScm: :Expr::List(

052 $self, # "class"
053 PScm: :Env: :Super->new(super => $parent_instance), # "super"
054 ((PScm: :Expr: :Number->new(0)) x @{ $self->{fields} }), # field...
055)

056)

057 }

058

059 sub get method {

060 my ($self, $method name, $object) = @_;

061

062 if (exists $self->{methods}{$method name}) {

063 return PScm::Closure: :Method->new(

064 $self->{methods}{$method name}{args},

065 $self->{methods}{$method name}{body}, $object);

066 }

067 }

068

069 FHHHHHHHHHHHIHEHHIHBRHHEH
070 package PScm::Class::Root;

071

072 use base qw(PScm::Class);
073

074 sub new {

075 my ($class, $env) = O_;
076

077 return bless {

078 parent => 0,

079 fields => [1,

080 methods => {},

081 env => $env,
082 }, $class;

083 }

084

085 sub make_instance {

086 my ($self) = @_;

087

088 return $self->{env}
089 ->ExtendUnevaluated(
090 new PScm: :Expr::Symbol("class"),
091 $self

092)

093 }

094

095 1;

12.5. LISTINGS 155

12.5.2 t/PScm 00.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1lib ’t/lib’;

005 use PScm::Test tests => 6;
006

007 BEGIN { use_ok(’PScm’) }
008

009

010 eval_ok(<<EQOF, "account", ’classes’);
011 (define account

012 (make-class root (amount)

013 (init (x) (set! amount x))
014))

015 EOF

016

017 eval ok(<<EOF, <<EOR, ’objects’);
018 (define account

019 (make-class

020 root

021 (balance)

022 (init (x) (set! balance x))

023 (balance () balance)

024 (withdraw (x) (set! balance (- balance x)))
025))

026 (define myaccount (account 10))
027 (myaccount balance)

028 (myaccount withdraw 2)

029 (myaccount balance)

030 EOF

031 account

032 myaccount

033 10

034 8

035 8

036 EOR

037

038 eval_ok(<<EQF, <<EOR, ’inheritance’);
039 (define account

040 (make-class

041 root

042 (balance)

043 (init (x) (set! balance x))

044 (balance () balance)

045 (withdraw (x) (set! balance (- balance x)))
046 (deposit (x) (set! balance (+ balance x)))
047))

048 (define interest-account

049 (make-class

050 account

051 (rate)

156 CHAPTER 12. CLASSES AND OBJECTS

052 (init (x 1)

053 (begin

054 (super init x)

055 (set! rate r)))

056 (accumulate ()

057 (this deposit (* (this balance) rate)))
058))

059 (define myaccount (interest-account 10 2))
060 (myaccount balance)

061 (myaccount withdraw 2)

062 (myaccount balance)

063 (myaccount accumulate)

064 (myaccount balance)

065 EOF

066 account

067 interest-account

068 myaccount

069 10

070 8

071 8

072 24

073 24

o074 EOR

075

076 eval_ok(<<EOQOF, <<EOR, ’class variables’);
077 (define counter-class

078 (let ((count 0))

079 (make-class

080 root

081 O

082 (init () (set! count (+ count 1)))
083 (count () count)

084)

085 (define ol (counter-class))
086 (ol count)

087 (let ((o2 (counter-class))
088 (03 (counter-class)))
089 (o1 count))

090 EOF

091 counter-class

092 ol

093 1

094 3

095 EOR

096

097 eval_ok(<<EOF, <<EOR, ’super calls’);
098 (define c1

099 (make-class

100 root

101 O

102 (ma () (this mb))

103 (mb () 0)

12.5. LISTINGS 157

104))

105 (define c2

106 (make-class
107 cl

108 O

109 (ma () (super ma))
110 (mb OO 1)
111)

112 ((c2) ma)

113 EOF

114 c1

115 c2

116 1

117 EOR

118

119 # vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.0.9.tgz

158 CHAPTER 12. CLASSES AND OBJECTS

Chapter 13

Continuations

What are continuations? Why should you want to know about them? The rest of this chapter is devoted
to answering the first of those questions, but the second question deserves some sort of an answer early
on, if only to encourage you to pursue the answer to the first.

I hope you can remember (I certainly do) that wonderful eureka moment when you first “got”
recursion, and all its implications. Grasping the concept of continuations is an even more rewarding and
dare I say transcendental experience, and well worth the effort.

Continuations are an advanced control-flow technique that can be used to implement any and all
standard control-flow mechanisms including but not limited to conditional branching, loops (with break
statements), goto, return etc. Beyond the standard control-flow mechanisms, continuations also promise
an almost limitless potential for new types of control flow that might be difficult or near impossible to
achieve in any other way, for example

e co-routines;
e threads;
e exceptions;

e logic programming

Let’s talk a bit about co-routines. Co-routines are groups of two or more functions or methods that
interact with one another in a much more even-handed way than just “A() calls B().” A classic example
is a producer-consumer pair of routines, which pass data, possibly via some intermediate structure such
as a list. The producer produces data, pushing it on to the list, and the consumer consumes it, shifting
it off the list again, something like Figure 13.1 on the next page.

Think of the producer using some complex algorithm to generate a stream of data while the consumer
uses an equally complex algorithm to parse it. Both the producer and consumer are independant loops,
so on the face of it, if the producer was called it would never relinquish control to give the consumer a
look-in, it would just continue to push data onto that list. Likewise the consumer, if it were running,
would just consume data until the list was exhausted. Both loops could have extensive internal logic and
state such that even if the producer could simply call the consumer when it had produced something, the
consumer would have great difficulty returning control to the producer without loosing all of its internal
state. Reversing the roles, so that the consumer called the producer would still have exactly the same
issues.

159

160 CHAPTER 13. CONTINUATIONS

Figure 13.1: Producer/consumer pair

Fl o 1]

Data
Put Get

Producer Consumer

The only apparent solution would be to implement the producer and the consumer as separate threads,
or even as completely separate processes and have some IPC mechanism to pass the data between them.
But this pair of co-routines might only be part of a much larger system and the division into separate
threads or processes might be inelegant or inappropriate. Continuations provide a solution by allowing
a sort of “procedural goto” wherby control passes directly from the center of one routine to the heart of
the other, and then back again, resuming exactly where the “goto” left off!

Threads are a common enough concept nowadays, but you might be surprised to hear that continuations
make it almost trivial to implement so called “green” threads (application as opposed to operating system
threads). We’ll actually do this in a later chapter.

Exceptions are a simple application of continuations, where control, rather than unwinding down a stack,
proceeds immediately to some handler routine. Perl’s eval{die} construct is an example of this sort of
thing. We’ll demonstrate a very simple error construct towards the end of this chapter.

Logic Programming, as demonstrated by languages such as Prolog [3], is a completely different paradigm;
it has more in common with recursive database search and large-scale pattern matching than the mostly
functional style of programming presented by PScheme. However a more advanced application of con-
tinuations makes it possible to implement the basis of such a language, and we will attempt that later
on too.

I hope that I have whet your appetite for the potential of continuations, however the topic of continuations
is somewhat difficult, and this chapter is a long one.

Before diving in, it would be a good idea to discuss a couple of related topics, namely tail recursion and
tail call optimization. Then with those under our belts, we can progress to continuations themselves. We
will talk about continuations by discussing continuation passing style, a programming technique available
to many languages, including Perl. Then we proceed to re-write the interpreter from Chapter 12 on
page 135 in continuation passing style, and by exposing the underlying continuations in the PScheme
language, we show what an incredibly powerful tool they are.

Much of the above may not make much sense on first reading, but hopefully the rest of the chapter
will make it clear, so let’s get started.

13.1. TAIL RECURSION AND TAIL CALL OPTIMIZATION 161

13.1 Tail Recursion and Tail Call Optimization
Consider the following definition of factorial() in Perl:

sub factorial {

my ($n) = Q@_;
if ($n == 0) {

return 1;
} else {

return $n * factorial($n - 1);

}
}

print factorial(5), "\n"; # prints 120

This is the classic recursive definition of the factorial function: the factorial of 0 is 1, and the factorial of
any other positive number is that number times the factorial of one less than that number (factorial is
not defined for negative numbers). You will be getting very familiar with this function in various guises
from here on in so it is probably worth taking a good long look at it now in its simplest form before we
start to change things.

To start off, consider the behaviour of this function when called with a positive numeric argument.
The evolution on the stack of the call to factorial (5) would proceed as follows:

factorial(5b)

* factorial(4)

4 x factorial(3)

4 % 3 x factorial(2)

2 * factorial(1l)

2 * 1 *x factorial(0)
2 x 1 x 1

2 x 1

2

o1 o 01 01 O O O O1 O1 O
N N NN NN
LR .
DWW W W W
¥ X ¥ X ¥

* X X X ¥ X ¥ X *

120

Although this picture omits many details, it is obvious that the stack grows (to the right in the example)
and that there are deferred multiplications that only get performed as the calls to factorial () return
and the stack is unwound again.

We can rewrite that factorial function in a different form with the addition of a helper function, like
this:

sub factorial {
my ($n) = @_;
return factorial_helper($n, 1);

}

sub factorial_helper {

162 CHAPTER 13. CONTINUATIONS

my ($n, $result) = 0O_;

if ($n == 0) {
return $result;
} else {

return factorial_helper($n - 1, $n * $result);

}
}

print factorial(5), "\n"; # still prints 120

This version works by moving the body of the factorial function into the helper function and passing
it an additional value, an accumulator with an initial value of 1. This means that the helper function
can calculate the result as it proceeds up the stack rather than having to wait for $n to reach zero and
calculating the result on the way back down.

This is still a recursive definition, but because of the way the result is calculated it differs from the
original factorial () in one absolutely crucial detail: the last thing it does is to call itself recursively and
it immediately returns the result. In the original definition the result of the recursive call to factorial ()
had to be multiplied by the current value of $n before it could be returned.

A function which is called and its result immediately returned is said to be in tail position and the
code making the call is said to be making a tail call. A recursive function which calls itself in tail position
is said to be tail recursive. Tail calls are special because the stack setup to make the call and teardown
afterwards is essentially redundant: the result of the function making the tail call is the result of the
function being called, and the caller’s stack frame is destroyed immediatly after the called function’s
stack frame is. If we could overwrite the caller’s arguments with the arguments to the called function,
then goto the called function, then when that function does a return it will return not to the caller,
but to the caller of the caller. This is called tail-call optimization (TCO).

Figure 13.2 shows a normal procedure call in tail postion. You can see that the stack is extended by
the called function’s frame (which includes the return address), then that extension is discarded as the
called function returns, then the calling function’s frame is subsequently discarded as the calling function
returns to the previous caller (we are talking about the Perl stack here, not PScheme environments).

Figure 13.2: Tail call without TCO

call return

T Called Frame i return
Caller Frame Caller Frame Caller Frame

Previous Frame Previous Frame Previous Frame l | Previous Frame I
——— ——— ———

Figure 13.3 on the facing page shows the effect of tail call optimization. The caller’s frame is replaced
by the called function’s frame, then the caller jumps to the called function. When the called function
returns it does so directly to the previous caller.

Perl allows us to do precisely this, by means of assignment to @_ and the special goto &sub syntax.
Here’s our factorial helper () again, this time with TCO:

13.1. TAIL RECURSION AND TAIL CALL OPTIMIZATION 163

Figure 13.3: Tail call with TCO

goto return

Called Frame

Caller Frame

Previous Frame Previous Frame I l Previous Frame
— —

sub factorial_helper {
my ($n, $result) = Q_;

if ($n == 0) {
return $result;
} else {

@_ = ($n - 1, $n * $result);
goto \&factorial_helper;

This function, although written in a recursive style, operates in a constant space and consumes no stack.
In fact it is pretty much equivalent to this iterative definition:

sub factorial_helper {
my ($n, $result) = @_;

REPEAT:
if ($n == 0) {
return $result;
} else {

—--$n; $result *= $n;
goto REPEAT;

which just emphasizes the point that Tc0O’d tail-calls are really just gotos with arguments.

Many language implementations (gcc springs to mind) can perform implicit TCO, detecting calls in
tail position and replacing the call with a goto, and that’s all calls in tail position, not just recursive
ones. Furthermore, some languages such as Scheme require this behaviour of their implementations!.
Our PScheme implementation, through the use of continuations, will by the end of this chapter support
something equivalent.

That’s really all there is to tail recursion and TC0?. I've already said they have a direct bearing on
continuations, but there is a lot more to continuations than that, so lets take a look at using continuations
in perl.

'RORS requires that tail calls consume no resources, not necessarily that they perform precisely the Tco demonstrated
here. For now if you can just accept that implicit TCO or an equivalent is a desirable thing, all will become clear later.
For an alternative exposition of TCO (sometimes called Tail Call Elimination) see [4, pp229-234]

164 CHAPTER 13. CONTINUATIONS

13.2 Continuation Passing Style

This section discusses continuation passing style (CPS). It contains a number of exclaimation marks; I
hope you will agree that they are justified.
One way of thinking about a procedural computation is by decomposing it into just two main oper-

ations:
1. Calling a function with arguments;
2. Returning a result from a function.

Continuation passing style eliminates the second of these operations; in pure continuation passing style
no function you call ever returns!

13.2. CONTINUATION PASSING STYLE 165

This page deliberately left blank
to allow time for reflection on the
enormity of the previous state-
ment.

166 CHAPTER 13. CONTINUATIONS

... That being the case, you need to figure out how to tell a cPs function what to do with its result. So,
since a CPS function can’t return a result, it is instead passed an additional procedure as argument: a
continuation, and it passes its result to that.

The continuation represents the remainder of the computation after a function “returns”. Since
calling a continuation is equivalent to returning a result in non-CPs, you can also think of a continuation
as a reference to your function’s return statement.

As you might imagine, a computation which never returns will simply consume stack indefinately,
until it completes, but I hope the discussion of TCO above has addressed some of your reservations on that
score, and as I've said, continuations themselves, when fully realised, provide an alternative mechanism
for dealing with the same issue.

So what does continuation passing style look like in Perl? Well since continuations are procedures,

closures are an obvious and easy way to implement them. So our continuations can be created by sub {
} and called by $continuation->(...).

For a first example of CPS transformation, we’ll go back to our original factorial() function from

Section 13.1 on page 161 and re-write it in CPS. To save you having to refer back to it, here it is again.

sub factorial {

my ($n) = @_;
if ($n == 0) {

return 1;
} else {

return $n * factorial($n - 1);

}
}

print factorial(5), "\n"; # prints 120

Now as we have said, all cPs functions take an additional continuation argument. The continuation we
pass it depends on what we want to do with the result. Our original example printed the result, so let’s
just pass a continuation to do that:

factorial(5, sub { print shift, "\n" });

The additional continuation argument sub { print shift, "\n" } just takes one argument and prints
it.

Next up is factorial() itself. This cPs factorial() takes an additional continuation as argument,
so the first couple of lines are easy:

sub factorial {
my ($n, $cont) = @_;

Next remember that whenever the function used to return a result, it must now call its continuation on
that result, so the next couple of lines are also pretty easy: wheras the original returned 1 if $n was 0,
the cPs version calls its continuation on the value 1 instead.

13.2. CONTINUATION PASSING STYLE 167

if ($n == 0) {
$cont->(1);

This works for factorial(0, sub { print shift, "\n" }): the continuation will get and print a 1.
That leaves the tricky bit. The original function reads:

} else {
return $n * factorial($n - 1);
}

You can see that recursive call to factorial () has some deferred computation, namely the multiplication
by $n to be done when the call returns. But as we’ve said a CPS function never returns so we must
somehow wrap that deferred computation up in a new continuation and pass it to factorial ().

If you get stuck on a difficult cps transform, it almost always pays to break the expression into a
sequence of simpler operations first. We can do that here easily enough:

} else {
my $factorial_result = factorial($n - 1);
my $result = $n * $factorial_result;
return $result;

So this is much easier now. You can see that the first thing that happens is that factorial () calls itself.
Then the result is multiplied by $n, and finally it is returned. So our new continuation is just the code
that now follows the call to factorial (), wrapped in a function:

sub {
my ($factorial_result) = @_;
my $result = $n * $factorial_result;
return $result;

Since factorial () will call this continuation with its result, $factorial result is the argument to the
continuation.

There is one additional change that we need to make. Where the original code did a return $result,
our new continuation must call the original continuation on the $result instead.

sub {
my ($factorial_result) = @_;
my $result = $n * $factorial_result;
$cont->($result);

This is our new continuation. All that remains is to pass it to our recursive factorial call:

168 CHAPTER 13. CONTINUATIONS

} else {
factorial($n - 1, sub {
my ($factorial_result) = @_;
my $result = $n * $factorial_result;
$cont->($result);

)

We can now shorten this considerably by eliminating the temporary variables:

} else {
factorial($n - 1, sub { $cont->($n * shift) });
¥

The new continuation is sub { $cont->($n * shift) }. It takes one argument: the result so far (this
is the value that our non-cps factorial() would have returned). It multiplies the result by the current
value of $n then calls the current continuation $cont on that value?.

That completes our initial CPS re-implementation of factorial():

sub factorial {
my ($n, $cont) = @_;

if ($n == 0) {
$cont->(1);
} else {

factorial($n - 1, sub { $cont->($n * shift) });

}
}

factorial(5, sub { print shift, "\n" }); # still prints 120
At the risk of labouring a point, consider the call:
factorial(3, sub { print shift, "\n" });

The evolution of the continuation will proceed as follows:

3 Actually, if we were implementing in rabid, pure CPS, then even the primitives such as multiplication would take a
continuation. We could simulate that here by re-writing our continuation as:

sub { times($n, shift, $cont) }
where times () is

sub times {
my ($x, $y, $cont) = @_;
$cont->($x * $y);

}

which at least emphasizes that the continuation is still being passed, though it is overkill for our purposes.

13.2. CONTINUATION PASSING STYLE

sub {
print shift, "\n"
}
sub {
sub {
print shift, "\n"
}=>(3 * shift)
}
sub {
sub {
sub {
print shift, "\n"
}->(3 * shift)
}->(2 * shift)
}
sub {
sub {
sub {
sub {
print shift, "\n"
}->(3 * shift)
}=>(2 * shift)
}->(1 * shift)
¥
sub {
sub {
sub {

sub {
print shift, "\n"
}->(3 * shift)
}->(2 * shift)
}->(1 * shift)
}->(1) # factorial 0

sub {
sub {
sub {
print shift, "\n"
}->(3 * shift)
}->(2 * shift)
}=>(1)

169

170 CHAPTER 13. CONTINUATIONS

sub {
sub {
print shift, "\n"
}->(3 * shift)
}=>(2)

sub {
print shift, "\n"
}=>(6)

print 6, "\n"

The deferred multiplications accumulate until we reach the point where the entire accumulated continua-
tion is finally called with argument 1, then they unwind from the outside in until the original continuation
gets invoked on the argument 6 and 6 is printed. If you think about it, this evolution is functionally
identical with the implicit deferred computations on the stack in our original factorial(), the only
difference being that now we have a variable $cont that explicitly refers to the continuation.

Still sticking with our cPs factorial (), there is more that we can do. Because in CPS no function
ever returns, all function calls must be in tail position!?. As you can see our recursive call to factorial ()
is now in tail position, so we can use TCO to remove the spurious use of stack:

sub factorial {
my ($n, $cont) = @_;

if ($n == 0) {
$cont->(1);
} else {

@ = ($n - 1, sub { $cont->($n * shift) });
goto \&factorial;

}

This is still a “recursive” definition of factorial(), but now it is not the stack which is growing, but
the continuation itself which consumes more and more space as our computation proceeds.

An astute reader will have realised that, in fact, we are still using stack when the continuations
actually get triggered: those calls to $cont->($n * shift) will of course use just as much stack as the
original did. However note that the continuations themselves must be called in tail position, so with a
little more work we can eliminate that stack overhead too:

sub factorial {
my ($n, $cont) = @_;

if ($n == 0) {
e_ = (1);
goto $cont;
} else {

@ = ($n - 1, sub { @_ = ($n * shift); goto $cont; });

4Tt’s obvious really: Since no cps function ever returns, any deferred computation must have been moved into the
continuation, and a function call without deferred computation is by definition in tail position.

13.2. CONTINUATION PASSING STYLE 171

goto \&factorial;

}

This is very messy, but it works as advertised: it consumes absolutely no stack at any point; all deferred
computations are in the continuations. Just bear in mind that in a language that provided implicit TCO,
we wouldn’t need any of those assignments to @_ or the gotos, and I've promised that continuations
themselves will allow an alternative and cleaner solution in our interpreter.

Moving on, what about that iterative/recursive definition of factorial() with a helper function
from Section 13.1 on page 1617 We can re-write that in CPs too. How does it compare? Well first here’s
a non-CPS variation on the original again, thoroughly TCO’d this time:

sub factorial {
my ($n) = @_;
e_ = ($n, 1);
goto \&factorial_helper;

}

sub factorial_helper {
my ($n, $result) = @_;

if ($n == 0) {
return ($result);
} else {

@_ = ($n - 1, $n * $result);
goto \&factorial_helper;

}

print factorial(5), "\n"; # prints 120
and here it is re-written in CPS:

sub factorial {
my ($n, $cont) = @_;
@_ = ($n, 1, $cont);
goto \&factorial_helper;

}

sub factorial_helper {

my ($n, $result, $cont) = @_;

if ($n == 0) {
@_ = ($result);
goto $cont;

} else {
@_ = ($n - 1, $n * $result, $cont);
goto \&factorial_helper;

172 CHAPTER 13. CONTINUATIONS

}

factorial(5, sub { print shift, "\n" }); # still prints 120

Our new tail recursive CPS factorial () function takes an additional continuation argument and passes
that to factorial helper(). factorial helper() either goes to the continuation with the result, or
goes to itself with new values for $n and $result; but since it has no deferred computation, it does not
need to construct a new continuation and just passes the existing continuation to the recursive call.

The take home message here is that this tail recursive definition of factorial () using factorial -
helper () translates into a CPS where neither the stack nor the continuation grows. This is a general
result: functions written to be tail-recursive consume no stack when TCc0O’d, and do not build new
continuations when rewritten into CPs.

The “normal” way, or at least the easiest way to produce CPs code is to do what we did above: take
non-CPs code and translate it into CPS. In the next section we’re going to look at a few examples of
simple, hypothetical function forms and how they translate into CPs.

13.3 Example cprs Transformations

To keep these examples simple, we’ll ignore any issues of TCO. These examples should allow us to proceed
with more confidence into the subsequent rewrite of our interpreter.

e The simplest kind of function is one that takes no arguments and returns a constant:

sub A {
return ’hello’;
}

The cps form of this takes a continuation as argument and calls the continuation on the constant:

sub A {
my ($ret) = @_;

$ret->(’hello’);

I’ve called the continuation $ret instead of $cont to emphasize it’s equivalence with a return
statement. One of the guiding principles of converting to CPs is that calling the argument con-
tinuation in CPS is equivalent to doing a return in non-CcPs. In fact you can mentally substitute
return(...) for $ret->(...) in many of these examples without disturbing the sense of them.

e The next simplest form is a function that takes arguments and performs only primitive operations
such as addition on them, returning the result:

13.3. EXAMPLE CPS TRANSFORMATIONS 173

sub A {
my ($x, $y) = @_;

return $x + $y;

In this case, since primitive operations can’t take a continuation, and because they are “terminal”
operations that won’t run away off up the stack, we again can just call the continuation on the
result:

sub A {
my ($x, $y, $ret) = Q_;

$ret->($x + $y);

e Next come simple functions that just call another function without any deferred computation:

sub A {
my ($x) = @_;

return B($x);

Here, since there is no deferred computation, there need be no new continuation, we just pass the
existing continuation to the called function:

sub A {
my ($x, $ret) = @_;

B($x, $ret);

This is just saying to B() “return your result here.”

e Now we're starting to get into areas where there is deferred computation, and this is where it starts
to get just a little bit tricky:

sub A {
return C(B());
}

B() gets called first, and the value it returns is passed as argument to C(). In cps B() would never
return so we must also call it first, passing it a new continuation that calls C() with B()’s result
and the current continuation:

174 CHAPTER 13. CONTINUATIONS

sub A {
my ($ret) = @_;

B(
sub {
my ($B_result) = @_;
C($B_result, $ret);
}
);

The new continuation calls C() with two arguments: the result of the call to B(), and the original
continuation $ret to which C() should return its result. Since the original call to C() was returned
as the result of the call to A(), C() is being told “return your result here”.

e Sequential function calls present a slightly different problem.

sub A {
BQO);
CO;
DQ);

Here we must construct a nest of continuations to ensure that C() and D() get called in the correct
order after BO):

sub A {
my ($ret) = @_;
B(
sub {
C(
sub{
D($ret);
}
);
}
);

We call B() with a continuation that will call C() with a continuation that will call D() with the
original continuation $ret since the result of the call to D() was the result of the original call to
A (). Again this is just saying to D() “return your result here.”

e Next let’s look at a conditional expression:

13.3. EXAMPLE CPS TRANSFORMATIONS 175

sub A {
my ($x) = @_;

if (B($x)) {
C($x);

} else {
D($x) ;

}

The call to B() in the condition will never return, so we must pass it a continuation that tests its
result and decides which branch to take accordingly, passing the the original continuation to the
chosen branch:

sub A {
my ($x, $ret) = Q@_;

B($x,
sub {

my ($B_result) = @_;

if ($B_result) {
C($x, $ret);

} else {
D($x, $ret);

}

Both the true and the false branch used to make a single call in tail position to C() or D(), so now
we simply pass the original continuation unchanged as an additional argument to C() or D().

e Finally, for now, lets look at a looping function.

sub A {
my $i = 0;
while ($i < 10) {
BQ);

++$1i;

This needs a bit more thought. It turns out to be easiest to do a preliminary rewrite of this example
into a recursive form as follows:

176 CHAPTER 13. CONTINUATIONS

sub A {
A_h(0);
}

sub A_h {
my ($i) = @_;
if ($i < 10) {
BO;
Ah($i + 1);

}

Turning that into CPS then becomes just a re-application of examples we’ve seen before:

sub A {
my ($ret) = @_;
A_h(0, $ret);

}

sub A_h {
my ($i, $ret) = @_;
if ($i < 10) {
B(
sub { A_h($i + 1, $ret); }
);

}

AQ) calls A.h() with the continuation unchanged (A-h(), return your result here.) Since B() will
not return, it is passed a continuation that carries on the recursion on A_h(), passing the original
continuation $ret.

The examples above give a taste of the sorts of transformations that we shall be applying to our interpreter
soon. There are other more difficult cases that might appear impossible at first sight (uses of map for
example,) but again they can be resolved by first re-writing the expressions in a more tractable form
before converting to cps. We’ll see examples of this sort of thing when we get to them.

It happens that there does exist a formal methodology for transforming statements in any language
capable of supporting CPs into CPS. The above example transformations are samples from that ruleset.
All such transformations can be automated. When I started this chapter I was hopeful that perhaps
something in the B package, the Perl compiler, would be available that could perform the transform but
that appears not to be the case. Anyhow we’ll learn a lot more about CPs by performing the transform
manually, so that is the best approach to take.

13.4 The Trampoline

I promised that there was an alternative to all the messy assignments to @_ and the gotos that constitute
TCO. Well that falls out of three closely related properties of a fully realised CPs:

13.4. THE TRAMPOLINE 177

1. No function call ever returns, therefore:
2. Every function call must be in tail position, and therefore:

3. If you were to return something it would be guaranteed to return all the way down the stack to
the originating caller®.

Now just suppose that at well chosen points we do return something, and not just anything. Suppose
we return another continuation, this time taking no arguments, that when called just continues the
calculation from where it left off!

That is one of the surprising things about continuations, that they are completely self-contained and
require no external context to operate. You may need to convince yourself that this will work: Since we
can TCO a CPS function, such that it uses no Perl stack at all, then even if the CPS code is not TCco’d
there can be nothing on the Perl stack that it actually needs, just a long chain of return adresses that
it pases through after the computation is finished. Returning a continuation like this merely interleaves
this otherwise laborious chain of returns with the normal flow of control up the stack.

So how do we deal with this returned continuation? A handler routine, called a trampoline, starts
off by being called with a continuation of no arguments. It loops, repeatedly calling the continuation
and assigning the result (another continuation of no arguments) back to the continuation itself until the
result is undef. The code is easier to write than to describe:

sub trampoline {
my ($cont) = @_;
$cont = $cont->() while defined $cont;

}

To give you a feel of how this might work, let’s return once more to our cps factorial() function and
re-write it to make use of a trampoline instead of TCO. First to refresh your memory here’s our first cps
attempt again (slightly modified) before we TCO’d it:

sub factorial {
my ($n, $ret) = 0O_;

if ($n == 0) {
$ret->(1);
} else {
factorial($n - 1,
sub {

my ($a) = @_;
$ret->($n * $a)

DK
}

factorial(5, sub { print shift, "\n"; }); # still prints 120

and here it is rewritten to use a trampoline.

5 Actually, we’re also relying on the fact that perl implicitly returns the value of a tail call as the value of a function.

178 CHAPTER 13. CONTINUATIONS

sub factorial {
my ($n, $ret) = @_;

if ($n == 0) {
return sub { $ret->(1); };
} else {

return sub {
factorial($n - 1,
sub {
my ($a) = @_;
return sub { $ret->($n * $a) }
s
b

}

sub trampoline {
my ($cont) = @_;
$cont = $cont->() while defined $cont;

}

trampoline (
sub {
factorial(5, sub { print shift, "\n"; return undef; });
}

); # still prints 120

Changes from the original are in bold as usual. The key to understanding this is to notice that whenever
a function call was done in the original, either to factorial() or to the continuation, a closure which
will make that call is returned to the trampoline instead. Each time this happens the stack is completely
cleared down and the trampoline resumes the computation by calling the returned closure. Finally, at
the end of the computation, the original continuation passed to factorial () gets invoked, printing the
result and returning undef to the trampoline causing it to stop.

Like TCO, the trampoline technique is not specific to cpPs, but both techniques require that the
modified calls be in tail position, making cPs a prime candidate for either kind of optimisation®.

Well that’s pretty scary stuff. Both TCcO and the trampoline are simply alternative strategies to avoid
unlimited use of the stack, and you may be wondering if the trampoline has any advantages over TCO at
this point. I'd like to make a few arguments in favour of the trampoline here.

1. Our factorial() example is a very tight piece of code which somewhat overemphasizes the role of
the trampoline by doing a lot with it in a small space. Particularily the explicit return of a closure
to make the recursive call does not have to be done for every tail call, we just need to ensure it

5The trampoline further requires that all intermediate calls also be in tail position, and that the values of all tail calls
are returned, so that a returned value would be guaranteed to reach the trampoline. Fortunately, CPs satisfies the first of
these requirements, and Perl satisfies the second.

13.5. USING CPS 179

happens fairly regularily on our way up the stack. For example in a set of mutually tail recursive
subroutines, A() calling B() calling C() calling A(). .., only one of those subroutines need do that
return. This is in contrast to TCO, where any unoptimised tail call constitutes a permanently
unclaimed stack frame.

2. Some languages do not allow the possibility of doing TCO, so any CPs implementation using such
a language would have to use a trampoline.

3. We can hide the trampoline from client CPS code by representing continuations as objects which
contain the closures, and putting the return to the trampoline in the method that invokes the
closure (provided that method is invoked in tail position).

It is the third argument that swings the case, and that’s exactly what we’ll be doing. If you don’t get
that argument yet, hold on and it will be made clear later.

13.5 Using cpPs

Thinking back to our original exposition of CPS from Section 13.2 on page 164 where we suggested that
normal procedural programming consisted primarily of calling functions and returning values, we said
that cps eliminates the second of these two operations. In fact that was a slight oversimplification.
There is a certain amount of equivalence between the operations of “call” and “return”, it is just the
direction of the flow of data that differs, “upwards” to the called function via its arguments, versus
“downwards” from the called function via its return value. Continuation passing style in fact unifies
these two operations, returning a value is the same as calling a function. Since in CPs data flows in only
one direction, in some sense CPS is actually a simplification!

Furthermore, an application written in CPS with complete TCO needs no stack at all: Tco allows us
to eliminate the use of stack by tail calls, and in cPs all function calls are tail calls’.

So now you understand continuations, but how do you use them? Well at each step of a computation
you have a continuation representing the current function’s return statement. But a continuation is a
variable, a reference to a subroutine, and you can do whatever you like with it!. You don’t have to call it
(return through it) just when everyone is expecting you to, you might call (return through) a completely
different continuation instead, or you might pass it to another function that can call it (return through
it) if it likes. And when a continuation is called (returned through), control flow transfers to wherever
the return statement equivalent to that continuation would have returned! Put another way, you have
always had control over what value your function returns, and when it returns it, but not until now have
you had control over where it returns it to!

And there’s more. Although code written in CPS retains the notion of a stack since functions call
functions and return values (via continuations); as we’ve already noted the stack is not really relevant,
or even necessarily present. Any continuation is as valid as any other. It is perfectly permissable to call
a continuation that resumes control in a function that has already returned, in effect jumping across the
call graph that a stack based language is constrained by!

Let’s give an explicit example to illustrate this last point. Consider the following simple perl script:

sub A {
print "in A\n";

BQO);

"This is what is meant by “Stackless Python”: an implementation of that language in cPs with complete TCO.

180 CHAPTER 13. CONTINUATIONS

print "back in A\n";

}
sub B {
print " in B\n";
CcO;
print " back in B\n";
}
sub C {
print " in C\n";
}
sub X {
print "in X\n";
YO;
print "back in X\n";
h
sub Y {
print " in Y\n";
z0;
print " back in Y\n";
}
sub Z {
print " in Z\n";
}
AQO;
X0;

A(Q) calls BQ) which calls C(), and X() calls Y() which calls Z(). The top level calls A() then X(). You
shouldn’t take too long to convince yourself that it will produce the following output:

in A
in B
in C
back in B
back in A
in X
in Y
in Z
back in Y
back in X

Just to hammer home the simple point, Figure 13.4 on the facing page shows the thread of control flow
passing through A(), BO, C(O, XO, YO and Z().

13.5. USING CPS

Now let’s re-write that program into CPs, without changing any of it’s behaviour:

sub

sub

sub

sub

sub

Figure 13.4: Control flow for the simple script

C 4
B Y
A X

> N >

A {

my ($ret) = @_;

print "in A\n";

B(sub { $ret->(print "back in A\n") });

B {

my ($ret) = @_;

print " in B\n";

C(sub { $ret->(print " back in B\n") });
c{

my ($ret) = @_;

$ret->(print " in C\n");

X {

my ($ret) = @_;
print "in X\n";
Y(sub { $ret->(print "back in X\n") });

Y {

my ($ret) = @_;

print " in Y\n";

Z(sub { $ret->(print " back in Y\n") });

181

182 CHAPTER 13. CONTINUATIONS

sub Z {
my ($ret) = @_;
$ret->(print " in Z\n");

¥
A(sub { X(sub {}});

There are no new tricks that haven’t already been described in Section 13.3 on page 172 above, the only
difference is that since none of the original functions actually returned anything interesting (they returned
the results of print statements), the equivalent continuations don’t bother looking at their arguments.

This produces identical output to the original program, and exhibits exactly the same control flow.
Now let’s make just three tiny changes.

my $C_ret;

sub A {
my ($ret) = @_;
print "in A\n";
B(sub { $ret->(print "back in A\n") });

sub B {
my ($ret) = @_;
print " in B\n";
C(sub { $ret->(print " back in B\n") });

sub C {
my ($ret) = @_;
$C_ret = $ret;
$ret->(print " in C\n");

sub X {
my ($ret) = @_;
print "in X\n";
Y(sub { $ret->(print "back in X\n") });

sub Y {
my ($ret) = @_;
print " in Y\n";
Z(sub { $ret->(print " back in Y\n") });

sub Z {
my ($ret) = @_;

13.5. USING CPS 183

$C_ret->(print " in Z\n");

}
A(sub { X(sub {P});

The first change is to declare a $C_ret variable to hold a continuation. Then C(), before it calls its
continuation, stores it in this $C_ret variable. Finally Z(), instead of calling its own continuation $ret,
calls the saved continuation $C_ret instead.

This produces the output below. Whether or not you find this surprising will depend on how closely
you’ve been following the discussion:

in A
in B
in C
back in B
back in A
in X
in Y
in Z
back in B
back in A
in X
in Y
in Z
back in B
back in A
in X

All proceeds normally until we reach the first call to Z(). Since Z() calls the continuation that C() saved,
Z() instead of returning to X(), returns to B() instead. Then normal service is resumed, starting from
the return to B(), until the next return from Z (), which again returns to B() and so on, ad infinitum.
what we have achieved is the control flow shown in Figure 13.5 on the following page.

(Cue the Mony Python music.)

If this still isn’t clear, which I suspect may be the case, look at Figure 13.6 on the next page. In this
figure I've “broken apart” the functions from their continuations. A() calls B() calls C() which calls the
continuation of B() (e.g. ¢cB()) which calls the continuation of A() etc. Now the continuation of B() is
just “return to AQ)” (call cA()) and the continuation of A() is to call X() etc.

I'm deliberately down-playing the idea of “return” now, this really is just function calls, and in that case
Figure 13.7 on the following page shows that there is really nothing special about Z calling cB, it’s just
a recursive loop, and TCO or a trampoline will take care of the stack for us.

This is what I meant by saying that CPS is a simplification. It linearizes control flow, so that it is just
a straight line of function calls. Once you get that idea, a whole world of possibilities opens up. For

184 CHAPTER 13. CONTINUATIONS

Figure 13.5: Control flow with continuations

C 4
B Y
A X

Figure 13.7: Continuations really are just subroutines

SRR S R

instance you can probably imagine at this stage that with a little more work, adding loops and passing
continuations around, we could easily arrive at a coroutine implementation, where control does jump
from the heart of one loop to the heart of another and back again without disturbing the state of either
loop.

13.5. USING CPS 185

There is a big downside to writing in CPS however, and that is that it makes your head hurt. A far
better approach is to use a language that has continuations built in “under the hood”. Then when you
write “return $val” you are really calling a continuation on $val, but you don’t have to worry about
it, and when you need to get hold of a continuation, you can ask for one. A language like that provides
continuations as first class objects in that they can be passed around as variables, much in the same way
as Perl provides anonymous subroutines (closures) as first class objects.

For example, if Perl had built-in continuations, and we could get at the current continuation by i.e.
taking a reference to the return keyword®, then we could rewrite all of this example without CPs, as
follows:

my $cont;

sub A {
print "in A\n";
BO;
print "back in A\n";

sub B {
print " in B\n";
CO;
print " back in B\n";

sub C {
$cont = \return;
print " in C\n";

sub X {
print "in X\n";
YO
print "back in X\n";

sub Y {
print " in Y\n";
AON
print " back in Y\n";

sub Z {
print " in Z\n";
$cont->()

8Thanks to Tom Christiansen for this idea.

186 CHAPTER 13. CONTINUATIONS

AQ;
XO;

Bold text shows the differences from the original non-CPs version.
We are going to turn our PScheme interpreter into just such a language. The next few sections will
describe the changes we need to make.

13.6 Implementation

Rather than attempting to rewrite the interpreter of Chapter 12 on page 135 from start to finish in
cps, We're going to backtrack to our first “interesting” interpreter, from Chapter 5 on page 59 which
has only let and lambda, and re-implement that. This has the advantage that we get a real working
interpreter with continuations which we can test early on, and we can demonstrate some of the power of
continuations with it. Then I'll gloss the re-writing of the final interpreter in stages by working through
the intermediate versions pausing only to study any previously unencountered constructs that require
novel treatment. Finally we’ll have a continuation-passing version of the interpreter from Chapter 12 on
page 135 to play with.

13.6.1 Our Trampoline Implementation

Our implementation of the trampoline does not differ significantly from the example that we presented
for factorial () above. But it is still best introduced gradually, so this section is still pseudocode, to a
certain extent.

Firstly we need to rewrite the read-eval-print loop into CPs, so that we can call the whole thing from
the trampoline. This isn’t actually very difficult to do, the repl for version 0.0.2 conceptually is as simple
as

sub repl {
my ($reader, $outfh) = @_;
while (my $expr = $reader->read()) {
my $result = $expr->Eval (new env);
$result->Print ($outfh) ;

}

We’ve already seen in Section 13.3 on page 172 that the easiest way to transform a while loop into CPS
is first to rewrite it into a recursive form, and this is easy to do here:

sub repl {
my ($reader, $outfh) = @_;
if (my $expr = $reader->read()) {
my $result = $expr->Eval (new env);
$result->Print ($outfh) ;
repl($reader, $outfh);

13.6. IMPLEMENTATION 187

Now to recast that into cPs is fairly trivial, especially if we remember that the reader PScm: :Read: :
Read () already returns undef on EOF, and it can continue to do so, telling the trampoline to stop, and
only calling its continuation if there is something to evaluate.

sub repl {
my ($reader, $outfh, $ret) = @_;
$reader->read(
sub {
my ($expr) = @_;
$expr->Eval(
new env,
sub {
my ($result) = @_;
$result->Print(
$outfh,
sub { repl($reader, $outfh, $ret) }

}

So apart from the return of undef by the reader, where would we put these return statements that
return a continuation to the trampoline? Well as I've said we could place them throughout the code,
but there’s a better idea.

Instead of continuations being simple anonymous subroutines, we make them into objects that contain
those anonymous subroutines, with a Cont () method to invoke the underlying closure. Then instead of
just writing;:

$ret->($arg) ;

to invoke a continuation, we say:

$ret->Cont ($arg) ;

Then, in that Cont () method, instead of just saying

sub Cont {
my ($self, $arg) = @_;
$self->{cont}->($arg) ;

}

we instead write

sub Cont {
my ($self, $arg) = @_;
return sub { $self->{cont}->($arg) };

188 CHAPTER 13. CONTINUATIONS

we have both effected the return of a continuation to the trampoline, and completely hidden the fact
from the client code”!

In reality there are a few minor complications with this approach, but the above discussion is very
close to our final implementation.

13.6.2 ©PS let and lambda

In this section we re-implement the interpreter version 0.0.2 from Chapter 5 on page 59 in continuation
passing style. Once that is done, we introduce a new construct, call/cc, which allows the language
direct access to continuations.

First of all we need a new PScm::Continuation class. I don’t want to show you all of that class
just yet, but here’s its new() method:

013 sub new {

014 my ($class, $cont) = @_;
015 bless { cont => $cont }, $class;
016 }

It takes an anonymous subroutine as argument and stores it in a cont field. We don’t want to be writing
new PScm::Continuation(sub {...}) all over the place, so we sweeten things with a little syntactic
sugar:

018 sub cont(&) {

019 my ($cont) = @_;
020 return __PACKAGE__->new($cont);
021 }

This is put on PScm::Continuation’s @EXPORT list'® so after importing it with “use
PScm: :Continuation;”, instead of writing new PScm::Continuation(sub {...}) we just write cont
{...} instead. If you're not familiar with this technique, see [13, pp225-231].

As discussed above, we add a trampoline() subroutine to PScm which repeatedly invokes the
continuation returned from its previous invocation, until the invocation returns undef, signaling the end
of the computation. Here’s trampoline():

070 sub trampoline {

071 my ($cont) = @_;
072 $cont = $cont->Bounce() while defined $cont;
073 }

It’s functionally equivalent to the prototype trampoline() subroutine discussed above. The Bounce ()
method is defined in PScm::Continuation to immediately invoke the continuation with no arguments:

¥ Assuming of course that the Cont () method is invoked in tail position, but we’ve been here before.

10T general it is always considered better form to use @EXPORT_OK rather than @EXPORT. However it is justifiable here
firstly because PScm::Continuation is part of PScheme, not a standalone library module, and secondly the only reason
another class would use PScm: :Continuation would be to gain access to the cont construct.

13.6. IMPLEMENTATION 189

039 sub Bounce {

040 my ($self) = @_;
041 $self->{cont}->();
042 }

Only trampoline() calls Bounce().
Now we need to look at the Read-Eval-Print loop from PScm, with the trampoline in place.

032 sub ReadEvalPrint {

033 my ($infh, $outfh) = @_;

034

035 $outfh ||= new FileHandle(">-");

036 my $reader = new PScm::Read($infh);

037 trampoline (cont { repl($reader, $outfh) });
038 }

It’s the same as we’'ve seen before up to Line 37 where instead of entering it’s loop, it invokes the
trampoline with a continuation. That continuation invokes a new helper routine repl () with the reader
and the current output handle as arguments. Here’s repl ().

040 sub repl {

041 my ($reader, $outfh) = @_;

042 $reader->Read(

043 cont {

044 my ($expr) = Q_;

045 $expr->Eval(

046 new PScm: :Env(

047 let => new PScm::SpecialForm::Let(),

048 %2 => new PScm::Primitive::Multiply(),
049 ’—) => new PScm: :Primitive::Subtract(),
050 if => new PScm::SpecialForm::If(),

051 lambda => new PScm::SpecialForm::Lambda(),
052 ’call/cc’ =>

053 new PScm::SpecialForm::CallCC(Q),

054),

055 cont {

056 my ($result) = @_;

057 $result->Print(

058 $outth,

059 cont {

060 repl ($reader, $outfh);

061 }

062)

063 }

064)

065 }

066)

067 }

190 CHAPTER 13. CONTINUATIONS

So the guts of the old ReadEvalPrint () have been moved to repl(). It’s just an expansion of the CPs
pseudocode for repl() in the previous section, and not nearly as bad as it might first appear, it’s really
just Read () calling Eval () calling Print () calling repl (), all through passed continuations.

There is also something new added to the environment. we’ll see what that new binding call/cc on
Line 53 is about later.

So the Read(), Eval() and Print() methods now all take continuations and must be modified
accordingly. Thankfully the modifications to Read() and Print () are trivial.

First we need to look at the cPS Print () method.

o7s sub Print {

076 my ($expr, $outfh, $cont) = @_;

077 print $outfh $expr->as_string, "\n";
078 $cont->Cont ($expr) ;

o079 }

It just does what it used to do, then calls its continuation with an arbitrary argument. That is the
continuation that will restart the repl and it doesn’t actually expect an argument, but Cont () does so
we’re just playing nice.

Notice that on Line 77 we don’t pass a continuation to the as_string() method. This is just a
normal non-CPs method call. The reasoning behind that is that although as_string() is potentially
recursive, at no point will it cause evaluation of any PScheme expressions. Since we are only interested
in continuations that might be exposed to user code, we can classify any method call that cannot result
in a call to Eval () as a simple expression and deal with it as an atomic operation. Contrarywise, calls to
Eval() or calls to methods that might result in a call to Eval() are classified as significant expressions,
and must be rewritten into cps. This distinction makes our rewrite much simpler!!.

As described above, that Cont () method actually returns a continuation of zero arguments which the
trampoline will execute (by calling Bounce() on it). This is the trick I was enthusing about earlier: to
return a continuation to the trampoline that will call the current continuation, rather than just directly
calling the current continuation. The return will fall all the way back to the trampoline, effecting a
complete cleardown of whatever stack might have accumulated up to this point, then the trampoline will
kick things off again:

034 sub Cont {

035 my ($self, $arg) = 0_;
036 return cont { $self->{cont}->($arg) };
037 }

The really neat thing about this is that the code that is written to use this method neither knows
nor cares that the continuation is not simply being invoked directly at this point. The presence of the
trampoline is completely invisible to the client cPS code.

Let’s take a look at Read() in PScm::Read next. In fact what we have done is to rename Read ()
to _read(), leaving it otherwise unchanged:

"The reasoning is that each call to Eval() within the interpreter corresponds to a value being calculated and, most
importantly, returned in the PScheme language. These points of return are exactly the points that require continuations
to be used instead. If however in the later CPs rewrite of the object system from Chapter 12 on page 135 we wanted to
allow PScheme objects to supply some sort of to-string method, and have that called in preference to the underlying Perl
as_string() method, then we would have to rewrite as_string() into CPS.

13.6. IMPLEMENTATION 191

017 sub _read {

018 my ($self) = @_;

019

020 my $token = $self->_next_token();
021 return undef unless defined $token;
022

023 return $token unless $token->is_open_token;
024

025 my Qres = ();

026

027 while (1) {

028 $token = $self->_read;

029 die "unexpected EOF"

030 if !defined $token;

031 last if $token->is_close_token;
032 push @res, $token;

033 }

034

035 return new PScm: :Expr::List(@res);
036 }

Then we provide a new Read () that handles the continuation.

063 sub Read {

064 my ($self, $cont) = O_;

065 my $res = $self->_read();

066 return undef unless defined $res;
067 $cont->Cont ($res) ;

068 }

Read () collects the result of the call to _read (), and if it is undef signifying EOF it returns undef to the
trampoline telling it to stop. Otherwise it calls its continuation on the result.

Next we need to take a look at Eval().

All Eval () methods now also take an additional continuation as argument. All the Eval() methods
are in subclasses of PScm::Expr. Let’s start by looking at the simplest of those expressions: literals
and symbols.

The old Eval () method in PScm::Expr just returned $self (numbers, strings and anything else by
default evaluate to themselves). The new version is little different, it calls its argument continuation on
itself:

012 sub Eval {

013 my ($self, $env, $cont) = O_;
014 $cont->Cont ($self);
015 }

Now for PScm: :Expr: :Symbol: :Eval(). The old Eval() method in PScm::Expr::Symbol returned
$env->LookUp($self). Our CPs version calls its continuation on that result instead, because we can
treat the call to LookUp() as a simple expression:

192 CHAPTER 13. CONTINUATIONS

103 sub Eval {

104 my ($self, $env, $cont) = @_;
105 $cont->Cont ($env->LookUp($self));
106 }

Evaluation of lists is a little more tricky, so to refresh our memories here’s the original PScm: :Expr: :
List::Eval() before CcPs transformation:

062 sub Eval {

063 my ($self, $env) = C_;

064 my $op = $self->first()->Eval($env);
065 return $op->Apply($self->rest, $env);
066 }

On Line 64 It evaluates the first component of the list to get the operator $op, then on Line 65 it applies
the operation $op to the rest of the unevaluated list.
Here’s the cps form:

063 sub Eval {

064 my ($self, $env, $cont) = @_;
065 return cont {

066 $self->first () ->Eval(

067 $env,

068 cont {

069 my ($op) = @_;
070 $op—>Apply($self->rest, $env, $cont);
071 }

072)

073 +s

o7a }

There’s rather a lot going on here, so best we approach it in two stages.

Firstly the return cont { ... } block wraps the entire method body in a continuation that we
return to the trampoline. Apart from PScm: :Continuation: :Cont () this is the only other place where
we explicitly fall back down to the trampoline. This is because all recursive calls to Eval() and Apply ()
must pass through this single function, and so we can stop all runaway stack consumption by Eval ()
and Apply () here'?. You can just ignore the return cont wrapper and consider only the body of the

12Remember our CpS factorial() example before TCO, where the stack built up during calls to factorial() and built
up further when the continuations actually triggered on factorial(0). Well the return in the PScm::Continuation::
Cont () method takes care of the second of these contingencies, and returning a continuation here takes care of the first. If
you don’t believe me, wait until we have rewritten the complete interpreter in CPS then enter the following definition in t/
interactive:

> (define factorial

> (lambda (x)

> (if x

> (* x (factorial (- x 1)))
> 1)))

Then try

13.6. IMPLEMENTATION 193

continuation as if it were the body of the function. It would still work, but might run out of stack in the
long run.

Secondly inside the method proper we assume that the first call to Eval(), in order to to get the
$op, will not return, so we pass it a continuation which accepts the result $op, and applies it to the rest
of the list, passing in the original continuation (Line 70). We must pass the original continuation $cont
to Apply (), rather than just calling the continuation on the result of the Apply (), because the Apply ()
might make calls to Eval() to evaluate arguments to the $op, among other things, and must therefore
be rewritten in CPS.

So that’s it for the rewrite of all of the Eval () methods in PScm::Expr. Now we need to follow the
chain of continuation passing into the various Apply () methods we have. Since this is an early version
of the interpreter, there aren’t too many, in fact they are in:

e PScm::Primitive;

e PScm::SpecialForm::Let;

e PScm::SpecialForm::If;

e PScm::SpecialForm::Lambda and

e PScm::Closure::Function.

Starting with PScm: :Primitive: :Apply (), you'll remember that all primitive operations share a com-
mon Apply () method. Now individual primitives do not have to accept continuations because they are
terminal operations, so all that we have to do is to call the continuation that was passed to the shared
primitive Apply () on the result of applying the individual primitive to its arguments.

Unfortunately this is complicated by the fact that the primitive Apply () must first evaluate its
arguments. The original primitive Apply () did it with map:

007 sub Apply {

008 my ($self, $form, $env) = @_;
009
010 my Qunevaluated_args = $form->value;
011 my G@evaluated_args = map { $_->Eval($env) } @unevaluated_args;
012 return $self->_apply(Q@evaluated_args) ;
013
}

This is a little tricky to rewrite in CPS, so we’re going to attack it in stages. Stage one will be to
write a recursive version of the builtin map, which instead of taking a sub and list, takes a listref and an
environment, and for each element of the listref, calls that element’s Eval () method with the environment
as argument, accumulating the result in a new listref. But wait a minute, don’t we already have such

> (factorial 170)
7257415615307998967396728211129263114716991681296451376543577798900561
8434017061578523507492426174595114909912378385207766660225654427530253
2890077320751090240043028005829560396661259965825710439855829425756896
6313439612262571094946806711205568880457193340212661452800000000000000
000000000000000000000000000

Perl would have complained long before it hit that many levels of recursion.

194 CHAPTER 13. CONTINUATIONS

a recursive map_eval() method? Yes, we wrote just such a method when we implemented true list
processing for version 0.0.5 back in Section 8.5.1 on page 92.
Here’s that method again.

120 sub map_eval {

121 my ($self, $env) = Q_;

122 return $self->Cons($self->[FIRST]->Eval ($env),

123 $self->[REST]->map_eval ($env));
124 }

Now remember that that is code from 0.0.5, and here we’re just rewriting version 0.0.2, so we don’t have
true list processing yet, lots of our methods are still expecting Perl array references, we don’t have a
Cons () method, and we don’t have any PScm::Expr::List::Null class. Nonetheless we can cast this
method back in to 0.0.2 terms quite easily.

This 0.0.2 map_eval () method is not yet in cpS form:

sub map_eval {

my ($self, $env) = Q_;
if (@$self) {

return [$self->first->Eval($env),

@{ $self->rest->map_eval($env) } 1;

} else {

return [];
}

}

This is pretty straightforward.

The second stage of our attack is to re-write map_eval () in CPS. It will take an additional continuation
argument, then, much as our factorial() example did, if the recursion has reached its limit (the
argument list is empty) it calls its continuation on the empty list. Otherwise it has not finished, and
it evaluates its first component, passing a continuation that arranges to evaluate the rest of the list by
recursing:

o76 sub map_eval {

077 my ($self, $env, $cont) = @_;

078

079 if (@$self) {

080 $self->first->Eval(

081 $env,

082 cont {

083 my ($evaluated_first) = @_;

084 $self->rest->map_eval(

085 $env,

086 cont {

087 my ($evaluated_rest) = @_;
088 $cont->Cont ([$evaluated_first,

089 @$evaluated_rest]);

13.6. IMPLEMENTATION 195

090 }

091);

092 }

093);

094 } else {

095 $cont->Cont ([1);
096 }

097 }

This is the trickiest piece of code in the entire CPS re-write. Fortunately having done it, it is useful in a
number of other scenarios. Now that we have map_eval () we can use it to re-write PScm: : SpecialForm: :

Primitive: :Apply():

oo sub Apply {

009 my ($self, $form, $env, $cont) = C_;

010

011 $form->map_eval(

012 $env,

013 cont {

014 my ($ra_evaluated_args) = @_;

015 $cont->Cont ($self->_apply(@$ra_evaluated_args));
016 }

017);

o8 }

Not too bad. The map_eval() is passed a continuation that applies the primitive operation to the
evaluated arguments and calls the original argument continuation on the result.

It is worth noting again that there was no need to pass any continuation to the individual private
_apply () methods for each primitive, so PScm::Primitive::Multiply etc. are unchanged.

The rest of the cpPs transformations are much simpler, on the whole, and others that require the
rewriting of map can make use of map_eval().

Next up is PScm::SpecialForm::Let, here’s the changes:

013 sub Apply {

014 my ($self, $form, $env, $cont) = Q_;

015

016 my ($bindings, $body) = $form->value;
017 my (@symbols, @values);

018

019 foreach my $binding ($bindings->value) {
020 my ($symbol, $value) = $binding->value;
021 push @symbols, $symbol;

022 push @values, $value;

023 }

024

025 $env->Extend (

026 \@symbols,

196 CHAPTER 13. CONTINUATIONS

027 \@values,

028 cont {

029 my ($newenv) = @_;

030 $body->Eval ($newenv, $cont);
031 }

032)

033 }

The changes are in bold on Lines 14 and 27-31
If you remember, the old version at the end simply said

return $body->Eval ($env->Extend(\@symbols, \@values));

Since we know that the call to $env->Extend () will not return (those @values are still to be evaluated),
we instead have to pass a continuation that will accept the resulting extended environment and evaluate
the body in it. We have already dealt with all the Eval() methods (They're all in PScm::Expr) and
they all take a continuation, so we pass the original continuation argument, since the Eval() is the
expression that this Apply() was previously returning.

Remembering to add PScm: :Env: :Extend() to our list of methods that will need looking at, we
proceed to PScm: :SpecialForm: : If: :Apply (). We've already discussed how to transform a conditional
expression into CPS form, but since this is our first encounter in the wild, let’s refresh our memory by
first looking at the original non-cps version:

032 sub Apply {

033 my ($self, $form, $env) = @_;

034

035 my ($condition, $true_branch, $false_branch) = $form->value;
036

037 if ($condition->Eval($env)->isTrue) {

038 return $true_branch->Eval($env);

039 } else {

040 return $false_branch->Eval ($env);

041 }

042 }

It evaluates the condition in the current env, and calls isTrue() on the result, then uses that to decide
whether to evaluate the true branch or the false branch, both in the current environment.
Our cPs version is not that different:

041 sub Apply {

042 my ($self, $form, $env, $cont) = @_;

043

044 my ($condition, $true_branch, $false_branch) = $form->value;
045

046 $condition->Eval(

047 $env,

048 cont {

13.6. IMPLEMENTATION 197

049 my ($result) = @_;

050 if ($result—>isTrue) {

051 $true_branch->Eval ($env, $cont);
052 } else {

053 $false_branch->Eval($env, $cont);
054 }

055 }

056)3

057 }

It evaluates the condition in the current environment and passes a continuation that will accept the
result. That continuation calls isTrue() on the result and uses that to decide, in exactly the same way,
whether to evaluate the true branch or the false branch. In either case the original continuation that
was argument to PScm: :SpecialForm: :If::Apply() is passed to the chosen branch’s Eval() method.

Staying with the program, our next task is the invocation of lambda handled by PScm::Special-
Form: :Lambda: : Apply O):

065 sub Apply {

066 my ($self, $form, $env, $cont) = G_;
067
068 my ($args, $body) = $form->value;
069
070 $cont->Cont (PScm: :Closure: :Function->new($args, $body, $env));
071
}

There’s nothing very interesting here. lambda just creates a closure. There are no calls to Eval() that
it must make during this creation, so we can treat the call to new as a simple expression and invoke our
argument continuation on the result.

That just leaves PScm: :Closure: :Function: :Apply() and PScm: :Env: :Extend(). Let’s start with
PScm::Closure::Function. The original just mapped Eval() over its arguments then called a private
_apply () method on the results:

043 sub Apply {

044 my ($self, $form, $env) = @_;

045

046 my Q@evaluated_args = map { $_->Eval($env) } $form->value;
047 return $self->_apply(@evaluated_args);

048 }

Another job for map_eval() then:

044 sub Apply {

045 my ($self, $form, $env, $cont) = C_;
046

047 $form->map_eval(

048 $env,

049 cont {

198 CHAPTER 13. CONTINUATIONS

050 my ($ra_evaluated_args) = @_;

051 $self->_apply($ra_evaluated_args, $cont);
052 }

053);

054 }

Note however that we need to pass the current continuation to that private _apply() method. That’s
because the closure will be calling Eval () on its body. Let’s take a look at PScm: :Closure: :_apply().

021 sub _apply {

022 my ($self, $ra_args, $cont) = O_;
023
024 my $extended_env =
025 $self->env->ExtendUnevaluated([$self->args], $ra_args);
026 return $self->body->Eval($extended_env, $cont);
027
}

It differs in that it takes a reference to an array of args and a continuation, rather than just an array of
args, and it passes the continuation in to the call to Eval() on its body.
Finally, we need to rewrite PScm: :Env: :Extend ().

015 sub Extend {

016 my ($self, $ra_symbols, $ra_values, $cont) = Q_;
017

018 PScm: :Expr: :List->new(@$ra_values)->map_eval(
019 $self,

020 cont {

021 my ($ra_evaluated_values) = @_;

022 $cont->Cont (

023 $self->ExtendUnevaluated(

024 $ra_symbols, $ra_evaluated_values
025)

026)3

027 }

028)

029 }

It uses map_eval() to evaluate its list of values, passing the result to a continuation that extends the
environment with those values. It calls the argument continuation $cont on the result.

At this point in the discussion, we have a working CPS version of interpreter 0.0.2, and all the original
tests that were written for that version still pass. However we seem to have done a lot of hard work for no
benefit, since the interpreter is externally equivalent to the original 0.0.2 version. We can remedy that by
giving the interpreter an additional construct that provides direct access to the underlying continuations.

There are many ways that this could be done, but one of the best-known and most powerful ways
is with a form that goes by the unwieldy title call-with-current-continuation, usually abbreviated
to call/cc. This form takes a function as argument and calls it, passing the current continuation as an
explicit argument to the function, for example:

13.6. IMPLEMENTATION 199

> (call/cc (lambda (cont) (cont 10)))
10

When the function invokes the continuation as a function, control returns to the call/cc and the
argument to the continuation becomes the result of the call to call/cc.
If the previous example doesn’t seem too exciting, how about this:

> (call/cc

> (lambda (cont)

> (if (cont 10)
> 20

> 30)))

10

Here the call to (cont 10) produced an immediate return of the value 10 through the call/cc even
though it was executed in the conditional position of an if statement.

These two examples only show control passing down the “stack” when a continuation is invoked.
However it is perfectly reasonable for control to return up the stack to a procedure that has already
returned. It is simply not easy to demonstrate with this version of the interpreter. Once we have an
interpreter with assignment and sequences, it becomes much easier.

call/cc is in fact a low-level, if not the lowest level continuation tool. It is possible to build higher
level control constructs using it. Abandoning pscheme for a moment, consider this Fibonacci'® sequence
generator in some hypothetical Perl-like language that supports co-routines:

sub fib {
my ($i, $j) = (0, 1);
for (5;) {
yield $i;
(31, $j) = ($j, $1 + $));

}

while ((my $i = fib()) < 22) { # prints 0 1 2 3 5 8 13 21
print "$i ";
h

That yield call not only behaves like a return statement, but also remembers the current state of the
function so that the next time the function is called control resumes where it last left off. With built in
continuations this sort of control flow is very easy to achieve.

Anyway I hope this has whet your appetite a little for what call/cc can do, so let’s have a look at
its implementation.

It is of course a special form, and as usual it has an Apply () method:

13The Fibonacci series starts with 0 and 1. the next number in the series is always the sum of the previous two, e.g. 0,
1,1,2,3,5,8,13,21 ...

200 CHAPTER 13. CONTINUATIONS

074 package PScm::SpecialForm::CallCC;

075

076 use base qw(PScm::SpecialForm);

077 use PScm::Closure;

o078 use PScm::Continuation;

079

080 sub Apply {

081 my ($self, $form, $env, $cont) = @_;
082

083 $form->first->Eval(

084 $env,

085 cont {

086 my ($closure) = @_;

087 $closure->Apply(new PScm::Expr::List($cont),
088 $env, $cont);

089 }

090);

091 }

092

093 1;

It evaluates its first argument, which should result in a function of one argument, passing the Eval() a
continuation which will Apply () the function to a form explicitly containing the current continuation. It
also passes the current env and the current continuation a second time, this time as the normal implicit
argument.

That’s all there is to it. Of course the continuation itself will need an Apply () method so that it can
be invoked as an operator.

We'’re now ready to see the whole of the PScm::Continuation package, in Listing 13.10.1 on
page 225.
We've already seen most of this, only the Apply () method is new.

023 sub Apply {

024 my ($self, $form, $env, $cont) = @_;

025 $form->map_eval(

026 $env,

027 cont {

028 my ($ra_evaluated_args) = O_;

029 $self->Cont ($ra_evaluated_args->[0]);
030 }

031);

032 }

Apply () on Lines 23-32 is another method that makes use of map_eval() to evaluate its arguments.
It passes it a continuation that calls itself on the first of its evaluated arguments, totally ignoring the
passed-in, current continuation, and effecting transfer of control to whatever context this continuation
represents.

And we’re done.

13.6. IMPLEMENTATION 201

A simple test of call/cc can be seen in Listing 13.10.2 on page 226.

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.2.tgz

202 CHAPTER 13. CONTINUATIONS

13.6.3 CPS letrec

The interpreter version 0.0.3 back in Chapter 6 on page 73 introduced letrec (let recursive) which
allowed environments to be created in such a way that closures would extend the environment that they
were themselves defined in, allowing them to make recursive calls.

This subsection takes the additions to version 0.0.3 and reimplements them in ¢pPs. We’re going to
start to pick up the pace somewhat from hereon in, but I'll still present all of the changes, starting with
the letrec special form itself. Here’s the original v3:

040 sub Apply {

041 my ($self, $form, $env) = @_;

042

043 my ($ra_symbols, $ra_values, $body) = $self->UnPack($form, $env);
044

045 return $body->Eval(

046 $env->ExtendRecursively($ra_symbols, $ra_values));

047 }

The cPS version calls a modified PScm: :Env: :ExtendRecursively (), passing a continuation that takes
the recursively extended environment and evaluates the body in it, passing the original continuation to
that Eval().

049 sub Apply {

050 my ($self, $form, $env, $cont) = @_;

051

052 my ($ra_symbols, $ra_values, $body) = $self->UnPack($form);
053

054 $env->ExtendRecursively(

055 $ra_symbols,

056 $ra_values,

057 cont {

058 my ($extended_env) = @_;

059 $body->Eval ($extended_env, $cont);
060 }

061);

062 }

PScm: :Env: :ExtendRecursively() calls PScm: :Env::ExtendUnevaluated() as a simple expression
then calls _eval _values() on the extended environment, passing the original continuation:

041 sub ExtendRecursively {

042 my ($self, $ra_symbols, $ra_values, $cont) = Q_;

043

044 my $newenv = $self->ExtendUnevaluated($ra_symbols, $ra_values);
045 $newenv->_eval_values($cont);

046 }

Here’s the new cPS _eval_values():

13.6. IMPLEMENTATION 203

048 sub _eval_values {

049 my ($self, $cont) = @_;
050 $self->_map_bindings([keys %{ $self->{bindings} }1, $cont);
051 }

It uses a new helper _map_bindings(), where the original _eval_values() just used map. This works
in a similar way to map_eval (), evaluating each value in the environment but then assigning the result
back to the original binding:

053 sub _map_bindings {

054 my ($self, $ra_keys, $cont) = @_;

055 my (@keys) = @$ra_keys;

056 if (Gkeys) {

057 my $firstkey = shift Qkeys;

058 $self->{bindings}{$firstkey}->Eval(

059 $self,

060 cont {

061 my ($value) = @_;

062 $self->{bindings}{$firstkey} = $value;
063 $self->_map_bindings([@keys], $cont);
064 }

065);

066 } else {

067 $cont->Cont ($self) ;

068 }

069 }

Other methods are unchanged so we have completed the CPS rewrite of letrec, and all tests for 0.0.3
still pass in 0.1.3.

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.3.tgz

204 CHAPTER 13. CONTINUATIONS

13.6.4 CPS let*

The interpreter version 0.0.4 back in Chapter 7 on page 81 added let*, a shorthand way of creating
nested environments providing the appearence of sequential assignment within the bindings of the let*
expression. This was a simple addition, the rewrite will be equally simple.

Here’s the new PScm: :SpecialForm: :LetStar: : Apply():

o7o sub Apply {

071 my ($self, $form, $env, $cont) = O_;

072

073 my ($ra_symbols, $ra_values, $body) = $self->UnPack($form) ;
074

075 $env->ExtendIteratively(

076 $ra_symbols,

077 $ra_values,

078 cont {

079 my ($extended_env) = @_;

080 $body->Eval ($extended_env, $cont);
081 }

082)

083 }

Just like letrec (which called a modified PScm: :Env: :ExtendRecursively(),) this calls a modified
ExtendIteratively (), passing a continuation that evaluates the body of the let* in the new environ-
ment with the original continuation.

Here’s the modifications to PScm: :Env: :ExtendIteratively ():

048 sub ExtendIteratively {

049 my ($self, $ra_symbols, $ra_values, $cont) = Q_;
050 my @symbols = Q@$ra_symbols;

051 my Qvalues = @$ra_values;

052 if (@symbols) {

053 my $symbol = shift @symbols;

054 my $value = shift @values;

055 $self->Extend(

056 [$symbol],

057 [$valuel,

058 cont {

059 my ($extended) = @_;

060 $oxtended->ExtendIteratively([@symbols], [@values],
061 $cont);

062 }

063)

064 } else {

065 $cont->Cont ($self);

066 }

067 }

13.6. IMPLEMENTATION 205

The old version just iterated over the name/value pairs, creating an additional nested environment each
time around the loop and returning the final result. CPS is easier with recursive definitions so this
ExtendIteratively () has been recast as a recursive method. It still does the same job, but additionally
arranges that the original continuation gets called on the final, extended environment.

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.4.tgz

206 CHAPTER 13. CONTINUATIONS

13.6.5 cpPs List Processing

Our next iteration of the interpreter, version 0.0.5 back in Chapter 8 on page 87, added the list manipu-
lation functions quote, list, car, cdr and cons to the language, and additionally changed the internal
implementation of PScm::Expr::List from simple perl listrefs to linked lists, making PScm::Expr::
List abstract, adding a PScm::Expr::List::Pair class to represent the cons cells, and adding a PScm::
Expr::List::INull class to represent the empty list.

Surprisingly, The cPs rewrite of all of this is quite minimal. First, here’s the new quote in PScm: :
SpecialForm: :Quote: : Apply ():

157 sub Apply {

158 my ($self, $form, $env, $cont) = @_;
159 $cont->Cont ($form->first);
160 }

The original returned its first argument unevaluated, the cPs form calls its continuation on it. Remember
that the quote system was re-written for a later version of the interpreter to support unquote back in
Section 9.2.2 on page 112, so we’ll be returning to quote later on, in Section 13.6.6 on page 208, where
we rewrite that rewrite!

The other additional functions: car, cdr, cons and list are all primitives that share an Apply()
method that has already been rewritten into CPS in Section 13.6.2 on page 188.

Among the PScm::Expr classes, the only thing that changes is the map_eval() method. That
method was introduced in version 0.0.5 to work with pscheme lists, then re-introduced at an earlier stage
of the CPs rewrite, in version 0.1.2, because we needed a recursive alternative to Perl’s map. Finally, here,
we combine the two implementations. Here’s PScm: :Expr::List::Pair: :map_eval():

130 sub map_eval {

131 my ($self, $env, $cont) = @_;

132

133 $self->[FIRST]->Eval(

134 $env,

135 cont {

136 my ($evaluated_first) = @_;

137 $self->[REST]->map_eval(

138 $env,

139 cont {

140 my ($evaluated_rest) = @_;

141 $cont->Cont ($self->Cons ($evaluated_first,
142 $ovaluated_rest));
143 }

144 JH

145 }

146);

147 }

And here’s the new default PScm: :Expr: :map_eval () that terminates the recursion of map_eval() if
$self is PScm::Expr::Null, does the right thing if the cdr of the list is not a list, and handles
continuations, all in one tiny method:

13.6. IMPLEMENTATION 207

034 sub map_eval {

035 my ($self, $env, $cont) = O_;
036 $self->Eval($env, $cont);
037 }

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.5.tgz

208 CHAPTER 13. CONTINUATIONS

13.6.6 CPS macro and unquote

Version 0.0.6 of our interpreter, from Chapter 9 on page 107, introduced the macro special form. This
special form took arguments in an identical manner to lambda and created a variant type of closure
PScm::Closure::Macro. Normal lambda closure evaluation proceeds by evaluating the arguments to
the closure then evaluating the body of the closure with those arguments bound. In contrast macro
closure evaluation proceeds by evaluating the body of the closure with its unevaluated arguments bound,
then re-evaluating the result.

The rewrite into CPS is trivial, first here’s the cpPS form of PScm: : SpecialForm: :Macro: : Apply ():

175 sub Apply {

176 my ($self, $form, $env, $cont) = O_;

177 my ($args, $body) = $form->value;

178 $cont->Cont (PScm: :Closure: :Macro->new($args, $body, $env));
179 }

Just as with PSCm: :SpecialForm: :Lambda: :Apply (), the creation of the closure can be treated as a
simple expression (no calls to Eval()) and the continuation called on the result.
Now PScm: :Closure: :Macro: : Apply O):

062 sub Apply {

063 my ($self, $form, $env, $cont) = O_;
064

065 $self->_apply(

066 $form,

067 cont {

068 my ($new_form) = @_;

069 $new_form->Eval($env, $cont);
070 }

071);

or2 }

Here we pass a continuation to the core _apply () method that takes the resulting new form and evaluates
that in the current environment with the current continuation as an additional argument. The core -
apply () extends the environment with unevaluated arguments, then calls the body of the macro with
the new environment and the passed in continuation.

017 sub _apply {

018 my ($self, $args, $cont) = @_;
019
020 my $extended_env =
021 $self->{env}->ExtendUnevaluated($self->{args}, $args);
022 $self->{body}->Eval ($extended_env, $cont);
023
}

But you get the idea.

That’s all there is to the rewrite of the macro extension into cPs. However Chapter 9 on page 107 also
rewrote PScm::SpecialForm::Quote to support the unquote keyword which allows the interpolation
of evaluated sub-expressions within a quoted expression. That proves more interesting to recast into CPS.

Let’s start at the top by looking at the new CPs version of PScm: : SpecialForm: :Quote: : Apply ():

13.6. IMPLEMENTATION 209

186 sub Apply {

187 my ($self, $form, $env, $cont) = @_;
188 $form->first->Quote($env, $cont);
189 }

So far so good, we just pass the current continuation along with the current environment to the Quote ()
method of whatever expression we’re quoting.

Let’s deal with the easy stuff first. PScm: :Expr: :Quote () used to just return $self, the CPS version
calls the continuation on $self instead:

041 sub Quote {

042 my ($self, $env, $cont) = @_;
043 $cont->Cont ($self);
044 }

That leaves PScm::Expr::List::Pair’s Quote():

163 sub Quote {

164 my ($self, $env, $cont) = O_;

165 if ($self->[FIRST]->is_unquote) {

166 $self->[REST]->first->Eval ($env, $cont);
167 } else {

168 $self->quote_rest($env, $cont);

169 }

170 }

Great! since the calls to both Eval() and quote_rest() are in tail position, it need only pass the
continuation along to both. All the Eval() methods have already been dealt with of course, so that
leaves quote_rest (). Let’s first refresh our memories by looking at the non-CPs original:

142 sub quote_rest {

143 my ($self, $env) = Q_;

144 return $self->Cons(

145 $self->[FIRST]->Quote($env),

146 $self->[REST]->quote_rest ($env)
147);

148 }

This is definately not tail recursive. But if we think it through there are no problems. The first thing it
does is call Quote () on its first () element, then it calls itself on the rest () of the list, then finally it
calls Cons () on those two results. Both the call to Quote() and quote_rest() could potentially result
in calls to Eval() so we need to pass continuations to both. We can rewrite it a little first to make the
order of operations more explicit:

sub quote_rest {
my ($self, $env)

e_;

my $quoted_first = $self->first->Quote($env);

210 CHAPTER 13. CONTINUATIONS

my $quoted_rest = $self->rest->quote_rest($env);

return $self->Cons($quoted_first, $quoted_rest);

}

Now all we do is rewrite that so that the call to Quote () gets a continuation that performs the remaining
two operations, including passing a second continuation to quote_rest () that performs the last Cons ().
here’s the CPs rewrite:

172 sub quote_rest {

173 my ($self, $env, $cont) = O_;

174 $self->[FIRST]->Quote(

175 $env,

176 cont {

177 my ($quoted_first) = @_;

178 $self->[REST]->quote_rest(

179 $env,

180 cont {

181 my ($quoted_rest) = @_;
182 $cont->Cont (

183 $self->Cons($quoted_first, $quoted_rest));
184 }

185)s

186 }

187);

188 }

It calls Quote () on its first element, passing a continuation (Lines 176-186) that accepts the $quoted -
first and then calls quote rest() on the rest of the elements, passing that a continuation (Lines
180-184) that accepts the $quoted_rest and calls the original continuation on the result of Cons()-ing
the $quoted first and $quoted_rest together.

Finally, as before, where the default PScm: :Expr: :quote_rest () just returned $self, now it calls
its aregument continuation on $self:

046 sub quote_rest {

047 my ($self, $env, $cont) = @_;
048 $cont->Cont ($self);
049 }

That’s it for our CPS rewrite of the unquote facility. All other methods are unchanged.

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.6.tgz

13.6. IMPLEMENTATION 211

13.6.7 c¢©Ps Sequences and Assignment

Next up are the sequences (begin) and assignment (set!) introduced by interpreter 0.0.7 in Chapter 10
on page 123. Let’s start with sequences and the begin special form.

To recap begin takes a sequence of zero or more expressions and evaluates them in strict left to right
order, returning the last result. If given no arguments, in this implementation it returns the empty list.
Here’s its Apply O):

215 sub Apply {

216 my ($self, $form, $env, $cont) = 0_;

217 if ($form->is_pair) {

218 $self->apply_next($form, $env, $cont);
219 } else {

220 $cont->Cont ($form) ;

221 }

222 }

The original was iterative. This version has been recast in a recursive mould to make the cPs transform
easier and to take advantage of PScm::Expr::List. If the list is empty it calls the continuation on the
empty list, otherwise it passes the form, environment and continuation to a helper method apply next ():

224 sub apply_next {

225 my ($self, $form, $env, $cont) = @_;
226

227 $form->first->Eval (

228 $env,

229 cont {

230 my ($val) = @_;

231 if ($form->rest->is_pair) {
232 $self->apply_next ($form->rest, $env, $cont);
233 } else {

234 $cont->Cont ($val);

235 }

236 }

237);

238 }

It evaluates the first element of the list, passing a continuation that accepts the result. If there is more
of the list to process, it calls itself recursively on the rest of the list, otherwise it calls the original
continuation on the $val (the value of the last expression on the list). Note the similarity between this
method and map_eval(). The diference is only that apply next () does not need to construct a new list
of all the evaluated results.

Next and last is set!. set! uses PScm: :Env::Assign() that was developed for letrec to locate the
nearest binding for a symbol and change its value. set! is a special form since it evaluates its second
argument (the value) but not its first (the symbol).

197 sub Apply {
198 my ($self, $form, $env, $cont) = C_;

212 CHAPTER 13. CONTINUATIONS

199 my ($symbol, $expr) = $form->value;

200 $oxpr->Eval(

201 $env,

202 cont {

203 my ($val) = @_;

204 $cont->Cont ($env->Assign($symbol, $val));
205 }

206)3

207 }

The cPs rewrite is pretty straightforward. It evaluates the value passing a continuation that will perform
the assignment (a simple expression) calling the original continuation on the result.

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.7.tgz

13.6.8 CPS define

Version 0.0.8 in Chapter 11 on page 131 finally introduced define, delayed until then for reasons I won’t
reiterate here. Akin to set!, define takes a symbol and a value and binds the symbol to the value in
the current environment. It is a special form since it does not evaluate the symbol. The CPs rewrite of
PScm: :SpecialForm: :Define: : Apply () proceeds much as the one for set! did:

246 sub Apply {

247 my ($self, $form, $env, $cont) = @_;
248 my ($symbol, $expr) = $form->value;
249

250 $expr->Eval (

251 $env,

252 cont {

253 my ($value) = @_;

254 $cont->Cont ($env->Define ($symbol, $value));
255 }

256)

257 }

It evaluates the expression, passing a continuation that accepts the result and calls PScm: :Env: :Define ()
to bind the result to the symbol in the current environment. We can treat the call to PScm: :Env: :
Define() as a simple expression and just call the original continuation on the result.

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.8.tgz

13.6. IMPLEMENTATION 213

13.6.9 CPS OoOP

Version 0.0.9 in Chapter 12 on page 135 introduced an object-oriented extension to PScheme, by means of
the make-class special form and the root parent class. Although there was a fair amount of code added
to implement that extension, it turns out that very little of that code needs changing to produce a cps
version. As usual we just have to hunt down the calls to Eval() and ensure that there is a continuation
available to pass in. Let’s start with PScm: : SpecialForm: :MakeClass: : Apply Q).

265 sub Apply {

266 my ($self, $form, $env, $cont) = Q_;
267

268 my $parent_expr = $form->first;

269 my $fields = $form->rest->first;

270 my $methods = $form->rest->rest;

271

272 $parent_expr->Eval(

273 $env,

274 cont {

275 my ($parent_class) = @_;
276 $cont->Cont(

277 PScm: :Class—>new(

278 $parent_class, $fields, $methods, $env
279)

280)

281 }

282)

283 }

The first thing the old version did was to evaluate the parent expression (the value of the parent class)
then use that along with the fields and methods (unevaluated) to create the new class. Our rewrite
evaluates the parent expression passing a continuation that will create the class. We can treat the class
creation as a simple expression (it makes no further calls to Eval()) and just call the original continuation
on the result.

Nothing to follow up on there, so next we turn our attention to the application of a class to arguments,
which creates a new object. This is in PScm: :Class: : Apply O):

033 sub Apply {

034 my ($self, $form, $env, $cont) = Q_;

035

036 my $new_object = $self->make_instance();
037 $new_object->call_method(

038 $new_object,

039 "init", $form, $env,

040 cont {

041 $cont->Cont ($new_object) ;

042 }

043);

044 }

214 CHAPTER 13. CONTINUATIONS

As usual, Apply () now takes a continuation. The old version called make_instance() to create a new
instance of the class, then called the init method of the new object with the arguments to the class, then
returned the new object. The CPS version can still just call make_instance() as a simple expression, but
needs to pass a continuation to call method() because call method() will be calling Eval() on both
the arguments and the body of the method. The continuation just calls the original continuation on the
new object (as if it were returning it).

Remembering that objects in this implementation are just environments, Here’s the rewrite of PScm: :
Env::call method():

192 sub call_method {

193 my ($self, $this, $method_name, $args, $env, $cont) = Q_;
194

195 if (my $method = $self->_lookup_method($method_name)) {
196 $method->ApplyMethod ($this, $args, $env, $cont);

197 } else {

198 $cont->Cont (undef) ;

199 }

200 }

Hey, this isn’t too bad at all. If call_method() finds the method, it calls ApplyMethod() on it, passing
the original continuation as an extra argument. Wheras the old version implicitly returned undef if the
method was not found, the CPS version must explicitly call the continuation on undef!'4.

Next we need to look at PScm: :Closure: :Method: : ApplyMethod ():

096 sub ApplyMethod {

097 my ($self, $this, $form, $env, $cont) = C_;
098

099 $form->map_eval(

100 $env,

101 cont {

102 my ($evaluated_args) = @_;

103 $self->_apply(

104 PScm: :Expr: :List->Cons($this, $evaluated_args),
105 $cont) ;

106 }

107);

108 }

Again we use map_eval() on the $form (the arguments to the method) to evaluate them, this time
passing a continuation that applies the method to its evaluated arguments, using PScm: :Expr: :List::
Cons () to prepend the current object $this to the PScm::Expr::List of arguments to the core PScm: :
Closure::_apply () method, and passing in the original continuation. We’ve already discussed that core
_apply () method in Section 13.6.2 on page 188 when we re-wrote lambda.

That just leaves the calling of methods on the objects themselves. Both PScm::Env and PScm::
Env::Super have an Apply () method. The one from PScm::Env::Super arranges to pass the current
value of this to the called method, otherwise they are very similar. Here’s PScm: :Env: : Apply O):

Note that calling a continuation on undef is not the same as returning undef, the trampoline will never see this undef
and terminate the computation prematurely.

13.6. IMPLEMENTATION 215

202 sub Apply {

203 my ($self, $form, $env, $cont) = @_;

204

205 my ($method, $args) = ($form->first, $form->rest);

206 $self->CallMethodOrDie ($self, $method, $args, $env, $cont);
207 }

And here’s PScm: :Env: : Super: :Apply O):

231 sub Apply {

232 my ($self, $form, $env, $cont) = @_;
233
234 my ($method, $args) = ($form->first, $form->rest);
235 my $this = $env->LookUp(PScm: :Expr: :Symbol->new("this"));
236 $self->CallMethodOrDie ($this, $method, $args, $env, $cont);
237

}

They both now make use of a new support method PScm: :Env: :CallMethodOrDie () which just does
what it says.

209 sub CallMethodOrDie {

210 my ($self, $this, $method, $args, $env, $cont) = @_;
211 $self->call_method(

212 $this,

213 $method->value,

214 $args, $env,

215 cont {

216 my ($res) = 0_;

217 if (defined $res) {

218 $cont->Cont ($res);

219 } else {

220 die "method ", $method->value, " not found\n";
221 }

222 }

223)

224 }

It calls call method() on $self and passes a continuation that checks if the result is defined. If the
result is defined that means that call method () sucessfully found the method and invoked it, in which
case the original continuation is called on the result. If the result is undef then the method was not
found and CallMethodOrDie() lives up to its name.

To make some of the subsequent tests easier I've added a print primitive. It takes a single evaluated
argument and calls its Print () method. The only problem to solve is how to tell it about the current
output filehandle. Ideally we would create a new PScm::Expr::FileHandle type and install one con-
taining the default output filehandle in the environment for print to find, however it is easier for our
limited purposes to just pass the output filehandle to the PScm::SpecialForm::Print constructor. You
can see this in the changes to ReadEvalPrint () between 0.0.9 and 0.1.9 here:

216

CHAPTER 13.

033 sub ReadEvalPrint {

034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068 }

my ($infh, $outfh) = @_;

$outfh ||= new FileHandle(">-");

my $reader = new PScm::Read($infh);
my $initial_env;

$initial_env = new PScm: :Env(

let => new PScm::SpecialForm::Let(),

2% => new PScm::Primitive::Multiply(),
10 => new PScm::Primitive::Subtract(),
140 => new PScm::Primitive::Add(),

if => new PScm: :SpecialForm::If(),
lambda => new PScm::SpecialForm: :Lambda(),
list => new PScm::Primitive::List(),

car => new PScm::Primitive::Car(),

cdr => new PScm::Primitive::Cdr(),

cons => new PScm::Primitive::Cons(),
letrec => new PScm: :SpecialForm: :LetRec(),
’letx’ => new PScm::SpecialForm::LetStar(),
eval => new PScm: :SpecialForm: :Eval(),
macro => new PScm::SpecialForm::Macro(),
quote => new PScm::SpecialForm: :Quote(),
’set!’ => new PScm::SpecialForm::Set(),
begin => new PScm::SpecialForm: :Begin(),
define => new PScm::SpecialForm: :Define(),
’make-class’ => new PScm::SpecialForm::MakeClass(),
’call/cc’ => new PScm::SpecialForm::CallCC(),
print => new PScm::SpecialForm: :Print ($outfh),

)

$initial_env->Define(
PScm: :Expr: :Symbol->new("root"),
PScm: :Class: :Root->new($initial_env)
);
trampoline(cont { repl($initial_env, $reader, $outfh) });

CONTINUATIONS

The PScm::SpecialForm::Print package is unusual, therefore, in that it has a new() method and

creates its own instance, because it needs to save the argument filehandle.

standard CPS special form:

286 package PScm::SpecialForm: :Print;

287

288 use base qw(PScm::SpecialForm);

289

290 use PScm::Continuation;

291

Other than that it is a

13.6. IMPLEMENTATION 217

292 sub new {

203 my ($class, $outfh) = @_;

294 bless { outfh => $outfh }, $class;
295 }

296

297 sub Apply {

298 my ($self, $form, $env, $cont) = @_;
299 $form->first->Eval($env, cont {

300 my ($thing) = @_;

301 $thing->Print(

302 $self->{outfh},

303 cont {

304 $cont->Cont ($thing)
305 }

306);

307 PE

308 }

309

310 1;

PScm: :SpecialForm: :Print: :Apply () invokes its argument $form’s Eval() method with the current
environment and a continuation that will print the result, then call the original continuation on the
evaluated result. So print returns the expression that it printed.

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.9.tgz

218 CHAPTER 13. CONTINUATIONS

13.7 c¢prs Without Closures

Perl has made it relatively easy for us to implement CPS by passing closures as continuations, albeit with
an object wrapper. We should be glad of that and continue to use this feature. However the question
must be asked: how would we go about implementing CPS in a language that does not support closures?

The answer, or one answer in any case is to roll our own closures as separate objects. This would
mean a separate class for every occurrence of the cont{} construct in the PScheme source. The object
would be initialized with all of the values that the closure referred to, and a method in the class would
perform the same duty as the individual closure, referring to those saved values as attributes of $self
rather than as lexical variables. Consider the PScm: :Expr::List::Eval() method we discussed early
on, in its cps form:

063 sub Eval {

064 my ($self, $env, $cont) = @_;
065 return cont {

066 $self->first()->Eval(

067 $env,

068 cont {

069 my ($op) = @_;
070 $op—>Apply($self->rest, $env, $cont);
071 }

072);

073 +s

o7a }

You can see three continuations in this one method: the continuation $cont passed in as argument, the
outer cont{} returned to the trampoline, and the inner cont{} that applies the evaluated $op to the
as-yet unevaluated arguments. There is a lot of dependancy on the lexical scope of various variables in
this code. If we were going to do this without closures we would have to make all that explicit. Here’s
an attempt:

sub Eval {
my ($self, $env, $cont) = @_;
return new Bouncer(
new ListEvalFirstCont($self, $env, $cont)
);
}

The Bouncer class would cope with any continuations returned to the trampoline, it would have a
new () method to capture the argument continuation and a Bounce () method that invoked the captured
continuation:

package Bouncer;

sub new {
my ($class, $cont) = @_;
bless { cont => $cont }, $class;

13.7. CPS WITHOUT CLOSURES 219

sub Bounce {
my ($self) = @_;
$self->{cont}->Cont () ;

}

Then ListFirstEvalCont would need a new() method, and a Cont() method of no arguments, since
that is what the Bouncer would call on it it:

package ListEvalFirstCont;

sub new {
my ($class, $list, $env, $cont) = @_;
bless {
list => $list,
env => $env,
cont => $cont,
}, $class;

}

sub Cont {
my ($self) = @_;
$self->{list}->first()->Eval(
$self->{env},
new ListEvalRestCont($self->{list},
$self->{env},
$self->{cont});
);
}

You can see that the Cont() method here is doing the same thing that the closure was doing in the
original code, but it in turn must create a new ListEvalRestCont object rather than a closure. That
ListEvalRestCont would in turn need a new(), and a Cont () method, since that is what the operations
Eval() method would call:

package ListEvalRestCont;

sub new {
my ($class, $list, $env, $cont) = @_;
bless {
list => $list,
env => $env,
cont => $cont,
}, $class;

}

sub Cont {

220 CHAPTER 13. CONTINUATIONS

my ($self, $op) = @_;

$op->Apply ($self->{list}->rest,
$self->{env},
$self->{cont});

And that’s not the end of it, since really that last Cont () method should be returning a continuation to
the trampoline rather than just calling Apply () directly. ..

Admittedly this is just first pass untested code to give you an idea, but I'm not writing this just
to scare you off. The point to note is that there are three basic things that have to be kept track
of when implementing CPs without continuations. One is the current position in the control flow (in
this case the list being evaluated.) The second is the current environment: the values of variables that
the continuations need to execute; the third is the containing continuation. In fact what the closure
implementation makes implicit and effectively hides from us is that there is a chain of continuations,
from closure to closure, back to the originating continuation in the repl. This is an important observation.
It will greatly simplify the writing of a PScheme compiler later.

There are even some advantages to implementing continuations in this way. Primarily because the
chain of continuations is explicit, it can be traversed and searched making all sorts of additional control
flow constructs easier to implement. For example a try / throw / catch / resume mechanism need merely
traverse back up the continuation chain looking for a catching continuation, invoke it with the originating
continuation, and if the catch block could fix the problem it would resume from the instruction after
the throw. While this is possible with our existing implementation, it is more tricky.

13.8 ¢PS Fun

We’re done! Let’s play around with what we have.

13.8.1 An error Handler

There are many uses of call/cc, the simplest is probably the definition of escape procedures, procedures
that when called, escape the current context and return control to a containing outer context. The
simplest type of escape procedure is error. If at any point in your code you invoke error, the argument
error message is printed, the current context is abandoned and control is returned to the top level. For
example (pretending we have a divide “/” operator):

> (define div
> (lambda (numerator denominator)

> (if denominator

> (/ numerator denominator)

> (error "division by zero"))))
div

> (+ (div 2 0) 1)
Error: division by zero

O

>

13.8. CPS FUN 221

The addition never happened. Control returned directly to the top level. Using call/cc, we can define
an error escape procedure in the PScheme language itself, without needing to make further changes to
the interpreter.

All error has to do is to print its error message and call a continuation that returns control to the
top level. So, assuming that top level continuation is already installed as ~escape (I'm just using a caret,
“~”to prefix any continuation names so they stand out,) the error procedure itself is straightforward:

(define error
(lambda (msg)
(begin
(print msg)
("escape ()))))

Note that the ~“escape continuation expects an argument, so error passes the empty list (), and that
is what the repl prints as the result of whatever expression error is called from.
Next we need to create that top level continuation. Here’s a first attempt:

(define “escape (call/cc (lambda (c) c)))

This looks promising. The call/cc calls the anonymous lambda expression passing in the current
continuation. The lambda expression just returns its argument, which is what call/cc returns, and
that is what gets bound to the global ~escape. This is good, as far as it goes, the current continuation
certainly is bound to “escape.

The problem is that the operation of defining ~escape is part of the continuation saved in ~“escape.
Put another way, the first time error calls ~escape, control resumes at the point that call/cc is
returning its value and so the define is re-executed, binding the empty list to “escape and forgetting
the previously bound continuation. So the ~escape continuation is only useable once.

There are two ways to fix this.

The first way would be to change error so that it passes “escape as argument to itself: (“escape
“escape), The downside of that is that you will get a PScm::Continuation printed out as the result
of any call to error.

The other way to fix this is to change the way we set up ~escape in the first place. First of all we
create a global ~escape variable with an arbitrary initial binding:

(define “escape 0)
Then we use call/cc as before but call an expression that directly assigns to ~“escape:

(call/cc
(lambda (cont)
(begin
(set! “escape cont))))

This way the call/cc has no enclosing context, no deferred operations to perform, and when ~escape
is invoked control returns directly to the top level.

A test of the error handler, which just duplicates the above code, is in Listing 13.10.3 on page 227.
Next let’s try something a bit more challenging.

222 CHAPTER 13. CONTINUATIONS

13.8.2 yield

Remember that strange Fibonacci generator that was described towards the end of Section 13.6.2 on
page 188, the one that used a hypothetical yield command to return a value while remembering its
current position so that a subsequent call to the function would resume where it left off? Well here’s
how we’d like to write it in PScheme:

(define fib
(yielder
(letrec ((fib-loop
(lambda (i j)
(begin
(yield i)
(fib-loop j (+ i 3))))))
(fib-loop 0 1))))

and here’s how we’d like to call it:

(let ((n 10))
(while n
(begin
(set! n (- n 1))
(print (£ib)))))

Note that there is nothing at all special about the code that uses fib. All of the interesting details are
in the definition of £ib itself. The function fib is defined as a yielder (my term). It creates a recursive
helper routine fib-loop and calls it with arguments 0 and 1. That helper routine yields the current
value of its first argument i, then calls itself with argument i replaced by j and j replaced with i + j.

The second part of the example loops 10 times printing the next value from fib each time around
the loop.

Of course this presupposes a few features that PScheme doesn’t appear to have. The while macro
was already introduced in Section 9.2.2 on page 112, but here it is again just for completeness:

(define while
(macro (test body)
> (letrec
((Loop
(lambda ()
(if ,test
(begin
,body
(loop))
0NN
(Loop))))

You can see that it’s a recursive definition, but by now that shouldn’t worry you: as each call to loop is
in tail position we won’t grow any context or eat any stack with this definition.

13.8. CPS FUN 223

The other two features we don’t have yet are yield and yielder. yield is actually quite easy to
write. When we say (yield value), what we really want to do is return not only the value, but also
the current continuation so that the next time we are called that continuation can be called instead,
returning us to where we left off. We can return more than one value by wrapping the values in a list,
so notionally (yield value) means:

(“return (list current-continuation value))

where “return is another continuation set up by the caller of the function.
Now we need a way of getting the current continuation and the only way to do that is with call/cc
so, still notionally, but getting closer, (yield value) means:

(call/cc
(lambda (current-continuation)
("return (list current-continuation value))))

In fact that’s it, all we need to do is wrap that up in a macro, and we have yield:

(define yield
(macro (value)
’(call/cc
(lambda ("here)
(“return (list “here ,value))))))

Next we need to look at yielder. You probably won’t be surprised to find out it’s another macro.
It returns a function that, when called for the first time, invokes the body of the yielder expression,
saving the current continuation in a “return variable. When yield is invoked control returns through
the “return continuation. The “here continuation part of the returned result is saved and the value
part is returned by the function as a whole.

On subsequent calls, rather than invoking the body of the yielder again, the saved ~“here continu-
ation is invoked, returning control to where the yield left off. Here’s yielder:

(define yielder
(macro (body)
’(let ((firsttime 1)
("resume 0)
("return 0))
(lambda ()
(if firsttime
(let ((res (call/cc
(lambda (“cont)

(begin
(set! “return ~“cont)
,body)))))

(begin
(set! firsttime 0)
(set! “resume (car res))
(car (cdr res))))

224 CHAPTER 13. CONTINUATIONS

(let ((res (call/cc
(lambda (“cont)

(begin
(set! “return “cont)
("resume))))))

(begin
(set! "“resume (car res))

(car (cdr res)))))))))

Again, continuations are flagged with a caret.

That really is all there is to it. If this seems like a solution looking for a problem, then let me point
out a very real problem for which this would be the perfect solution. Consider the venerable File::
Find package from the core Perl distribution. This package allows you to specify criteria for recursively
locating files in a filesystem, along with a callback subroutine which is called on each file so located.
Sometimes this is exactly what you need, but sometimes you would prefer File::Find to behave as
an iterator, returning the next file found on each call. With proper support for co-routines in perl,
the callback function that you provide to File::Find need only yield the file to achieve exactly that,
without changing a single line of the File::Find package itself!

Tests for this yield feature, which just duplicate the above code, are in Listing 13.10.4 on page 228.

13.9 Summary

This has been a long chapter and a difficult one, particularily if you were unfamiliar with the subject of
continuations. It has however provided numerous real-world examples of cPS during the rewrite of the
interpreter and hopefully the basic principles of CPs have been well covered.

To reiterate the basic idea, continuations can be thought of as the “rest of the computation”, or
perhaps more graphically as a “reference to a return statement” that can be called as a function.

Anyway, having achieved a CPS interpreter in Section 13.6.2 on page 188 we then introduced the
call/cc form, which passes the current continuation to its argument function. If Perl functions could
take a reference to their return statement with a syntax like \return, then we could write call/cc in
perl like this:

sub call_cc {
my ($sub) = @_;
$sub->(\return);

}

Unfortunately Perl 5 does not support that syntax yet, but lest you think this is all irrelevant to Perl,
you should be aware that the Parrot virtual machine which will run Perl6 has continuations built in from
the ground up!

Finally, having completely re-worked the interpreter in CPs, in Section 13.8 on page 220 we showed
how we could use call/cc in conjunction with macro to create two high-level control constructs: error
and yield from within the PScheme language itself.

The next few chapters will take continuations a little further, to show the sorts of things that can be
done by varying the internal details of the implementation of continuations.

13.10. LISTINGS 225

13.10 Listings

13.10.1 PScm/Continuation.pm

001 package PScm::Continuation;
002

003 use strict;

004 use warnings;

005 use base qw(PScm);

006

007 require Exporter;

008

009 our Q@ISA = qw(PScm Exporter);

010

011 our GEXPORT = qw(cont);

012

013 sub new {

014 my ($class, $cont) = @_;

015 bless { cont => $cont }, $class;
016 }

017

018 sub cont(&) {

019 my ($cont) = @_;

020 return __PACKAGE__->new($cont);
021 }

022

023 sub Apply {

024 my ($self, $form, $env, $cont) = @_;
025 $form->map_eval (

026 $env,

027 cont {

028 my ($ra_evaluated.args) = Q_;
029 $self->Cont ($ra_evaluated_args->[0]);
030 }

031)

032 }

033

034 sub Cont {

035 my ($self, $arg) = Q@_;

036 return cont { $self->{cont}->($arg) };
037 }

038

039 sub Bounce {

040 my ($self) = @_;

041 $self->{cont}->Q);

042 }

043

044 sub Eval {

045 my ($self, $env, $cont) = Q_;
046 $cont->Cont ($self);

047 }

048

049 1;

226

13.10.2 t/PScm_CallCC.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1lib ’./t/lib’;

005 use PScm::Test tests => 2;

006

007 BEGIN { use_ok(’PScm’) }

008

009 eval_ok(<<EQOF, ’10’, ’call/cc’);
010 (let ((a (lambda (return)

011 (if (return (* 2 5))
012 20

013 30))))

014 (call/cc a))

015 EOF

016

017 # vim: ft=perl

CHAPTER 13. CONTINUATIONS

13.10. LISTINGS

13.10.3 t/CPS_Error.t

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039

use strict;

use warnings;

use Test::More;

use 1lib ’t/1ib’;

use PScm::Test tests => 2;

BEGIN { use_ok(’PScm’) }

eval_ok (<<EQOF, <<EOR, ’error’);
(define “error 0)
(call/cc
(lambda (cont)
(begin
(set! “error cont))))

(define error
(lambda (msg)
(begin
(print msg)
("error ()))))

(define div
(lambda (numerator denominator)
(if denominator
(/ numerator denominator)
(error "division by zero"))))

(+ (div 2 0) 1)

EOF

“error

PScm: :Continuation
error

div

"division by zero"
O

EOR

vim: ft=perl

227

228 CHAPTER 13. CONTINUATIONS

13.10.4 t/CPS_Yield.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1lib ’t/lib’;

005 use PScm::Test tests => 2;
006

007 BEGIN { use_ok(’PScm’) }
008

009 eval ok(<<EOF, <<EOR, ’yield’);
010 (define yield

011 (macro (value)

012 ’(call/cc

013 (lambda ("here)

014 (“return (list “here ,value))))))
015

016 (define yielder
017 (macro (body)

018 ’(let ((firsttime 1)

019 ("resume 0)

020 ("return 0))

021 (lambda ()

022 (if firsttime

023 (let ((res (call/cc

024 (lambda (“cont)
025 (begin

026 (set! “return “cont)
027 ,body)))))

028 (begin

029 (set! firsttime 0)

030 (set! “resume (car res))
031 (car (cdr res))))

032 (let ((res (call/cc

033 (lambda (“cont)
034 (begin

035 (set! “return “cont)
036 ("resume))))))
037 (begin

038 (set! “resume (car res))
039 (car (cdr res)))))))))
040

041 (define while
042 (macro (test body)

043 > (letrec

044 ((Loop

045 (lambda ()

046 (if ,test
047 (begin
048 ,body
049 (1oop))
050 O

051 (Loop))))

13.10. LISTINGS 229

052
053 (define fib
054 (yielder

055 (letrec ((fib-loop

056 (lambda (i j)

057 (begin

058 (yield i)

059 (fib-loop j (+ 1 jI)))))
060 (fib-loop 0 1))))

061

062 (let ((n 10))

063 (while n

064 (begin

065 (set!' n (- n 1))
066 (print (£ib)))))
067 EOF

068 yield

069 yielder

070 while

o7t fib

072 0
073 1
074 1
075 2
076 3
077 5
078 8
079 13

080 21

081 34

082 ()

083 EOR

084

085 # vim: ft=perl

230 CHAPTER 13. CONTINUATIONS

Chapter 14

Threads

Continuations make the implementation of threads almost trivial. The trick is in the trampoline. Our old
trampoline method repeatedly called Bounce () on the current continuation to get the next continuation,
until a continuation returned undef:

070 sub trampoline {

071 my ($cont) = @_;
072 $cont = $cont->Bounce() while defined $cont;
o73 }

If you think about it, a continuation already represents a single thread of computation. The trampoline
is just managing that single thread, ensuring that it does not consume too much stack. Suppose that
trampoline (), instead of just repeatedly invoking the current continuation, kept a queue of continua-
tions, and after bouncing the one at the front of the queue put the result onto the back of the queue (if
the result was not undef,) looping until the queue was empty. This version does exactly that:

101 sub trampoline {

102 while (@thread_queue) {

103 my $cont = shift @thread_queus;

104 $cont = $cont->Bounce();

105 push @thread_queue, $cont if defined $cont;
106 }

107 }

Note that it no longer takes an argument continuation, instead it gets the next continuation from the
front of the queue. @thread_queue is a new lexical “my” variable in the PScm package.
We place new threads on that queue with a new_thread () method, also in the PScm package:

096 sub new_thread {

097 my ($self, $cont) = @_;
098 push Q@thread_queue, $cont;
099 }

Very simple. it takes a continuation and pushes it onto the queue.
Next we need a way of creating threads from the PScheme language. This is done using a new special
form spawn. spawn takes no arguments and returns O to one thread and 1 to the other. This means you

231

232 CHAPTER 14. THREADS

can write code that does different things in different threads by testing the result, much like the UNIX
fork system call does:

> (if (spawn)

> (begin

> (print "hello")

> (print "hello")

> 1

> (begin

> (print "goodbye")
> (print "goodbye")
> (exit)))

"hello"

"goodbye"

"hello"

"goodbye"

1

Notice that although both threads run in parallel, one thread does an (exit) so only the result 1 from
the other thread gets printed.
spawn is a new special form in PScm::SpecialForm::Spawn, and it’s surprisingly easy to implement:

286 package PScm::SpecialForm: :Spawn;
287

288 use base qw(PScm::SpecialForm);
289 use PScm::Continuation;

290
291 sub Apply {
292 my ($self, $form, $env, $cont) = @_;
293
294 PScm->new_thread(cont {
295 $cont->Cont (new PScm: :Expr: :Number(0));
296 s
297
298 $cont->Cont (new PScm: :Expr: :Number(1));
299
}

On Line 294 it calls new_thread() with a new continuation that will call the current continuation with
argument 0, and on Line 298 it directly calls the current continuation with an argument of 1. This is so
easy I feel like I have cheated!, but really that’s all there is to it. The new continuation will get executed
in turn when the Cont () on Line 298 returns control to the trampoline, and the trampoline will continue
executing any threads on its queue until all threads have finished and the queue is empty.

exit is even more trivial. It has to be a special form because individual primitives do not get called
in tail position, but all that it has to do is to return undef to the trampoline:

327 package PScm::SpecialForm: :Exit;
328

233

329 use base qw(PScm::SpecialForm);

330

331 sub Apply {

332 my ($self, $form, $env, $cont) = @_;
333 return undef;

334 }

335

336 1;

Incidentally, exit provides a useful way of terminating the interactive interpreter. Typing (exit) at the
prompt while only one thread is running will result in an empty $thread_queue so the trampoline will
finish.

All that remains is to wire this in to the repl

035 sub ReadEvalPrint {

036 my ($infh, $outfh) = @_;

037

038 $outfh ||= new FileHandle(">-");

039 my $reader = new PScm::Read($infh);

040 my $initial_env;

041 $initial_env = new PScm: :Env(

042 let => new PScm::SpecialForm::Let(),

043 %7 => new PScm::Primitive: :Multiply(),
044 1—s => new PScm::Primitive: :Subtract(),
045 I => new PScm::Primitive::Add(),

046 if => new PScm: :SpecialForm::If(),

047 lambda => new PScm::SpecialForm: :Lambda(),
048 list => new PScm::Primitive::List(),

049 car => new PScm: :Primitive::Car(),

050 cdr => new PScm::Primitive::Cdr(),

051 cons => new PScm::Primitive::Cons(),

052 letrec => new PScm: :SpecialForm: :LetRec(),
053 >let*’ => new PScm::SpecialForm::LetStar(),
054 eval => new PScm: :SpecialForm: :Eval(),
055 macro => new PScm: :SpecialForm: :Macro(),
056 quote => new PScm: :SpecialForm: :Quote(),
057 ’set!’ => new PScm::SpecialForm::Set(),

058 begin => new PScm::SpecialForm: :Begin(),
059 define => new PScm::SpecialForm: :Define(),
060 ’make-class’ => new PScm::SpecialForm: :MakeClass(),
061 ’call/cc’ => new PScm: :SpecialForm::CallCC(),
062 print => new PScm::SpecialForm: :Print($outfh),
063 spawn => new PScm::SpecialForm::Spawn(),
064 exit => new PScm::SpecialForm::Exit(),
065);

066

067 $initial_env->Define(

234 CHAPTER 14. THREADS

068 PScm: :Expr: : Symbol->new("root"),

069 PScm::Class: :Root—>new($initial_env)

070);

071 __PACKAGE__->new_thread(cont { repl($initial_env, $reader, $outfh) });
072 trampoline();

073 }

Apart from the addition of spawn and exit to the initial environment, there is only one change.
The repl uses new_thread() to add the initial thread (continuation) to the @thread_queue then calls
trampoline() with no arguments, rather than passing the continuation directly to trampoline().

14.1 Variations

A more complete thread implementation would also provide mechanisms for collecting the result of one
thread in another with a wait command—mnot so easy, you’d need to put the waiting thread on a separate
queue and have the exit command take an argument and put it somewhere that the wait command
could find.

You would also need to be able to prevent concurrent access to sections of code, best done with some
sort of atomic semaphore operation. But atomicity is easy to guarantee at the level of the interpreter
internals, as long as no continuations are called during the claiming of a semaphore.

These variations are exercises you can try at home.

14.2 Tests

A simple test for spawn is in Listing 14.3.1 on the facing page.

14.3. LISTINGS

14.3 Listings

14.3.1 t/CPS_Spawn.t

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

use strict;

use warnings;

use Test::More;

use 1lib ’t/1lib’;

use PScm::Test tests => 3;

BEGIN { use_ok(’PScm’) }

eval _ok(<<EQF, <<EOR, ’spawn’);
(if (spawn)

(begin
(print "hello")
(print "hello")
1)
(begin
(print "goodbye")
(print "goodbye")
(exit)))
EOF
"hello"
"goodbye"
"hello"
"goodbye"
1
EOR

eval_ok(’ (exit)’, 7, ’exit’);

vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.10.tgz

235

236 CHAPTER 14. THREADS

Chapter 15

Better Error Handling

Section 13.8.1 on page 220 described how we could write our own error routine in the PScheme language,
using an escape procedure to return control to the top level and resuming the read-eval-print loop. That
implementation had a couple of drawbacks however.

e Apart from printing an error message, the error handler returned a value (the empty list) to the
repl which printed it.

e [t would be useful if we could gain access to the error continuation from within the PScheme
interpreter, so that recoverable errors would no longer have to be fatal.

In this short chapter we remedy these deficiencies by providing a built-in error primitive, and show how
our interpreter can interface with it.

15.1 The Built in error Primitive

All the error builtin has to do is to print its argument message and restart the repl. In order to restart
the repl it must have a continuation to do that, therefore much like the print special form, our error
will have to be initialised with arguments, this time both the output filehandle on which to print the
error, and the continuation to invoke afterwards. Here’s how we wire it in to the repl.

035 sub ReadEvalPrint {

036 my ($infh, $outfh) = @_;

037

038 $outfh ||= new FileHandle(">-");

039 my $reader = new PScm::Read($infh);

040 my $initial_env;

041 $initial_env = new PScm: :Env(

042 let => new PScm::SpecialForm::Let(),
043 72 => new PScm::Primitive::Multiply(Q),
044 =2 => new PScm::Primitive::Subtract(),
045 ' => new PScm::Primitive::Add(),

046 if => new PScm: :SpecialForm::If(),

047 lambda => new PScm::SpecialForm: :Lambda(),
048 list => new PScm::Primitive::List(),

237

238 CHAPTER 15. BETTER ERROR HANDLING
049 car => new PScm::Primitive::Car(),

050 cdr => new PScm: :Primitive::Cdr(),

051 cons => new PScm::Primitive::Cons(),

052 letrec => new PScm::SpecialForm: :LetRec(),

053 >let*’ => new PScm: :SpecialForm: :LetStar(),

054 eval => new PScm: :SpecialForm::Eval(),

055 macro => new PScm: :SpecialForm: :Macro(),

056 quote => new PScm::SpecialForm: :Quote(),

057 ’set!’ => new PScm: :SpecialForm::Set(),

058 begin => new PScm: :SpecialForm::Begin(),

059 define => new PScm::SpecialForm: :Define(),

060 ’make-class’ => new PScm::SpecialForm::MakeClass(),

061 ’call/cc’ => new PScm::SpecialForm::CallCC(),

062 print => new PScm: :SpecialForm: :Print ($outfh),

063 spawn => new PScm: :SpecialForm: :Spawn(),

064 exit => new PScm: :SpecialForm: :Exit(),

065 error => new PScm: :SpecialForm: :Error(

066 $outfh,

067 cont { repl($initial_env, $reader, $outfh) }
068)

069)

070

071 $initial_env->Define(

072 PScm: :Expr: :Symbol->new("root"),

073 PScm: :Class: :Root->new($initial_env)

074);

075 __PACKAGE__->new_thread(cont { repl($initial_env, $reader, $outfh) });
076 trampoline();

o7 }

You can see the token “error” being bound to a new PScm::SpecialForm::Error object, and the
constructor for that object is passed both the current $outfh and a continuation which just calls repl ()
with appropriate arguments.

The constructor for PScm::SpecialForm::Error just stashes its arguments:

348 sub new {

349 my ($class, $outfh, $cont) = @_;
350 bless {

351 outfh => $outfh,

352 cont => $cont,

353 }, $class;

354 }

When we invoke error with for example (error "my
Here it is:

error message") its Apply () method is invoked.

356 sub Apply {

15.2. USING THE ERROR BUILTIN FOR INTERNAL ERRORS 239

357 my ($self, $form, $env, $cont) = @_;

358

359 $form->first->Eval ($env, cont {

360 my ($msg) = Q_;

361 $self->do_error ($msg->display_string());
362 IDE

363 }

It has to use CPs because the error message itself might be computed, we can’t just assume that it is
already a string. So it Eval()’s the message, passing in a continuation that will first of all convert the
resulting message to a string suitable for display, and then call a secondary method do_error () on that
string. the display_string() method is defined in PScm::Expr to just call as_string():

036 sub display_string { $_[0]->as_string() }
but PScm::Expr::String overrides this to call $self->value() instead:
276 sub display_string { $_[0]->value }

The upshot of this is that the error message, if it’s a PScm::Expr::String, won’t be wrapped in quotes
when printed which is what the PScm: :Expr: :String: :as_string() method would have done.
Returning to PScm::SpecialForm::Error, do_error () is also quite simple:

365 sub do_error {

366 my ($self, $errstr) = @_;

367 $errstr =~ s/\n$//;

368 $self->{outfh}->print ("Error: ", $errstr, "\n");
369 return $self->{cont};

370 }

It expects only a simple perl string. it strips any trailing newline from the error message, prints it to
the stored output file handle, then returns the stored continuation to the trampoline. That continuation
will restart the repl, skipping the print stage of the current loop.

Apart from making the code a little easier on the eye, there is another reason for having a separate
do_error () method, and that brings us to the second part of this chapter.

15.2 Using the error Builtin for Internal Errors

It would be very useful if we could avail ourselves of this error builtin to report and recover from internal
errors such as type check and variable lookup failures. This is actually easy to do. All we have to do is
look up the error handler in the current environment and invoke its do_error () method. A new method
Error () in the PScm base class does exactly this, and so is available everywhere:

119 sub Error {

120 my ($self, $msg, $env) = @_;
121 my $error = $env->LookUp(new PScm: :Expr::Symbol(’error’));
122 $error->do_error($msg) ;

123 }

240 CHAPTER 15. BETTER ERROR HANDLING

The only thing it has to be careful of is that it calls do_error () in tail position, so that the continuation
gets returned to the trampoline.

Let’s look at a few places where we can make use of this new method. If you remember, way back in
Section 3.6 on page 27 we saw how the various primitive operations made use of a check_type () method,
which would die if the argument object was not of the desired type. Now we can cheat a little, and rather
than rewriting those primitives in CPS, we just catch the error with a (Perl) eval in the shared PScm: :
Primitive: :Apply() method, and call Error () with argument $@ if an error was detected. Here’s the
previous version of that PScm: :Primitive: :Apply():

oo sub Apply {

009 my ($self, $form, $env, $cont) = @_;

010

011 $form->map_eval(

012 $env,

013 cont {

014 my ($evaluated_args) = @_;

015 $cont->Cont ($self->_apply($evaluated_args->value)) ;
016 }

017)

o8 }

and here’s the changes:

oos sub Apply {

009 my ($self, $form, $env, $cont) = @_;
010

011 $form->map_eval(

012 $env,

013 cont {

014 my ($evaluated_args) = O_;
015 my $result = eval {

016 $self->_apply($evaluated_args->value) ;
017 +s

018 if ($0) {

019 $self->Error($@, $env);
020 } else {

021 $cont->Cont ($result);
022 }

023 }

024);

025 }

It is safe for Apply (), on Line 16 to evaluate the individual primitive separately, since it is not in CPS
form. Then all it has to do is either call the current continuation on the result, or invoke Error () with
$0, both calls being in tail position.

15.2. USING THE ERROR BUILTIN FOR INTERNAL ERRORS 241

Apart from primitive expressions, another place where we throw an exception on a recoverable error is
in the LookUp() method of PScm::Env, when we don’t find a binding for a variable. Unfortunately
LookUp () was treated as a simple expression in our CPS rewrite, so we need to backtrack to find the cps
code that invokes LookUp() in order to install the error handling. Fortunately there is only one place
where that happens, when a symbol is evaluated. Here’s the previous PScm: :Expr: : Symbol: :Eval().

103 sub Eval {

104 my ($self, $env, $cont) = @_;
105 $cont->Cont ($env->LookUp($self));
106 }

and the changes:

230 sub Eval {

231 my ($self, $env, $cont) = @_;

232 my $result = eval { $env->LookUp($self) };
233 if ($0) {

234 $self->Error($@e, $env);

235 } else {

236 $cont->Cont ($result);

237 }

238 }

Again, as with the primitive Apply () above, it is safe for it to execute the LookUp () first, since LookUp ()
is not in ¢pPs. Then, depending on $@, it either invokes Error () or calls the continuation on the result
of the lookup.

We next make an identical change to PScm: :SpecialForm: :Set: :Apply (). If you remember the set!
special form uses PScm: :Env: :Assign() to replace an existing binding with a new value, and it is an
error if Assign() can’t find a binding to change. It is Assign() that dies if the binding is not found, and
since Assign() is a simple expression that has not been rewritten into CPS, PScm: : SpecialForm: :Set: :
Apply () must trap the exception and throw the PScheme error. Firstly here’s PScm: :SpecialForm: :
Set: :Apply () before the changes:

197 sub Apply {

198 my ($self, $form, $env, $cont) = @_;

199 my ($symbol, $expr) = $form->value;

200 $expr->Eval (

201 $env,

202 cont {

203 my ($val) = @_;

204 $cont->Cont ($env->Assign($symbol, $val));
205 }

206);

207 }

and here’s the changes:

242 CHAPTER 15. BETTER ERROR HANDLING

197 sub Apply {

198 my ($self, $form, $env, $cont) = @_;
199 my ($symbol, $expr) = $form->value;
200 $expr->Eval(

201 $env,

202 cont {

203 my ($val) = @_;

204 my $result = eval { $env->Assign($symbol, $val) };
205 if ($0) {

206 $self->Error($e, $env);
207 } else {

208 $cont->Cont ($result);
209 }

210 }

211);

212 }

Another place where we died was in PScm: :Env: : populate_bindings () where we handle the possibility
of dot notation and single values in the formal arguments to a lambda expression. This routine is only
called by ExtendUnevaluated(), but unfortunately ExtendUnevaluated() is not yet in CPS form. In
this case, because ExtendUnevaluated() is called from a number of places and all those places would
have to be aware that ExtendUnevaluated() could throw a Perl exception, it seems better to rewrite
ExtendUnevaluated() into CPS, and change its callers to use the cps form. Here’s the CPs version of
ExtendUnevaluated().

038 sub ExtendUnevaluated {

039 my ($self, $symbols, $values, $cont) = Q_;
040

041 my %bindings;

042 eval {

043 $self->_populate_bindings(\/%bindings, $symbols, $values);
044 }s

045 if ($0) {

046 $self->Error($@, $self);

047 } else {

048 my $newenv = $self->new()bindings);

049 $newenv->{parent} = $self;

050 $cont->Cont ($newenv) ;

051 }

052 }

Most of the methods that call ExtendUnevaluated() are already in CPS so we don’t really need to see
the changes to them. One method, make_instance() in PScm::Class is not in CPS, so we need to
rewrite that too:

15.2. USING THE ERROR BUILTIN FOR INTERNAL ERRORS

048 sub make_instance {

049 my ($self, $cont) = @_;

050

051 $self->{parent}->make_instance(cont {

052 my ($parent_instance) = @_;

053

054 $self->{env}->ExtendUnevaluated(

055 new PScm: :Expr::List(

056 PScm: :Expr: :Symbol->new("class"), # $self

057 PScm: :Expr: :Symbol->new("super"), # $parent_instance
058 e{ $self->{fields} }, #0...

059),

060 new PScm: :Expr::List(

061 $self, # "class"
062 PScm: :Env: : Super->new(super => $parent_instance)
063 s # "super"
064 ((PScm: :Expr: :Number->new(0)) x @{ $self->{fields} })
065 , # field...
066),

067 $cont

068);

069 1)

o070 }

And the equivalent method in PScm::Class::Root:

098 sub make_instance {

099 my ($self, $cont) = @_;

100

101 $self->{env}->ExtendUnevaluated(

102 new PScm::Expr::Symbol("class"),
103 $self,

104 $cont

105)

106 }

243

The caller of make_instance(), PScm: :Class: :Apply (), was already in CPS so transforming that to call

the cPS form of make_instance() is trivial:

033 sub Apply {

034 my ($self, $form, $env, $cont) = @_;
035

036 $self->make_instance(cont {

037 my ($new_object) = @_;

038 $new_object->call_method(

039 $new_object,

040 "init", $form, $env,

244 CHAPTER 15. BETTER ERROR HANDLING

041 cont {

042 $cont->Cont ($new_object) ;
043 }

044);

045 PE

046 }

The last place where we die unnecessarily is in PScm: :Env: : CallMethodOrDie () where it is an error if
a method can not be found. Fortunately CallMethodOrDie() is already in CPS so it is even easier to
change. Here’s the original:

209 sub CallMethodOrDie {

210 my ($self, $this, $method, $args, $env, $cont) = @_;
211 $self->call_method(

212 $this,

213 $method->value,

214 $args, $env,

215 cont {

216 my ($res) = 0_;

217 if (defined $res) {

218 $cont->Cont ($res) ;

219 } else {

220 die "method ", $method->value, " not found\n";
221 }

222 }

223)

224 }

and here are the changes:

213 sub CallMethodOrDie {

214 my ($self, $this, $method, $args, $env, $cont) = @_;
215 $self->call_method(

216 $this,

217 $method->value,

218 $args, $env,

219 cont {

220 my ($res) = Q_;

221 if (defined $res) {

222 $cont->Cont ($res) ;

223 } else {

224 $self->Error(

225 "method " . $method->value . " not found\n",
226 $env

227)

15.3. TESTS 245

228 }
229 }

230);

231 }

Very simple: the die was already in tail position, so where it used to die, it invokes Error () instead.

15.3 Tests

A few simple tests for error are in Listing 15.4.1 on the next page. Primarily, besides demonstrating
that the error builtin works, they show that the repl is still up and running afterwards.

246

CHAPTER 15.

15.4 Listings

15.4.1

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049

use
use
use
use
use

t/CPS_BuiltInError.t

strict;

warnings;

Test: :More;

1lib ’t/1ib’;

PScm: :Test tests => 8;

BEGIN { use_ok(’PScm’) }

eval_ok (<<EQF, <<EOR, ’built in error’);
(define div
(lambda (numerator denominator)

(if denominator
(/ numerator denominator)
(error "division by zero"))))

(+ (div 2 0) 1)

EQF
div

Error: division by zero

EOR

BETTER ERROR HANDLING

eval_ok (<<EOF, <<EOR, ’argument to error need not be a string’);
(error ’(an error "message"))

EOF

Error: (an error "message")

ECR

eval ok(<<EQF, <<EOR, ’internal type error and recovery’);
(* 2 ll2ll)
(x 2 2)

EOF

Error: wrong type argument(PScm::Expr::String) to PScm::Primitive::Multiply

4
EOR

eval_ok(<<EQF, <<EOR, ’internal lookup error and recovery’);

X
2
EOF

Error: no binding for x in PScm::Env

2
ECR

eval ok(<<EQF, <<EOR, ’method lookup error and recovery’);
(define testclass
(make-class

root

O
(say-hello () ’hello)))

(define testobj (testclass))

15.4. LISTINGS 247

050 (testobj say-goodbye)

051 (testobj say-hello)

052 EOF

053 testclass

054 testobj

055 Error: method say-goodbye not found
056 hello

057 EOR

058

059 eval_ok(<<EOF, <<EOR, ’set! error and recovery’);
060 (set! x 1)

061 2

062 EOF

063 Error: no binding for x in PScm::Env
064 2

065 EOR

066

067 eval ok (<<EOF, <<EOR, ’lambda error and recovery’);
068 (define test

069 (lambda (a b c)

070 (list a b ©)))

071 (test 1 2)

072 2

073 EOF

074 test

075 Error: not enough arguments

076 2

077 EOR

078

079 # vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.11.tgz

248 CHAPTER 15. BETTER ERROR HANDLING

Chapter 16

Chronological Backtracking

Wheras, with the exception of Chapter 12 on page 135, we have been extending this interpreter to be
more like a complete scheme implementation, this chapter makes a deliberate departure from the R6RS
[12] specification to add a feature not normally found in functional or procedural languages. This feature
is best introduced by example, but suffice to say that it is one step on the way to implementing a logic
programming language.

Understanding this chapter relies heavily on previous chapters. If you have skipped ahead to here,
you should at least make sure that you understand the implementation details of cPs from Chapter 13
on page 159 before diving in to the details that follow. However you can read the next few sections on
their own if you want to get a taste of what this chapter has to offer.

16.1 Introducing amb

The feature we shall be adding is called amb [1, pp412-437]. amb is short for “ambivalent”—in the sense
of “having more than one value”. As I’ve said it is best introduced by example, and the simplest example
is this:

> (amb 1 2 3)
1
>
2
>
3
>

?

Error: no more solutions
> 7

Error: no current problem

What’s going on here? Well amb is given a list of values, and returns all of them. But it returns them one
at a time. When a “?” is typed at the PScheme prompt control backtracks to amb and it returns its next
result. So the execution of expressions involving amb is somehow threaded into the read-eval-print loop
itself. I should probably point out that this new behaviour is not specific to amb, but rather a general
property of the interpreter:

249

250 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

> 7

Error: no current problem
> (+22)

4

> 7

Error: no more solutions
> 7

Error: no current problem

The Error: no current problem message means just that: there is no current problem so no back-
tracking is possible, wheras the Error: no more solutions message means that the current “prob-
lem” has just exhahsted all of its posibilities. With no occurence of amb in the “problem” there is only
one possible outcome (4 in the (+ 2 2) example above) so the repl continues to behave as normal for
“normal” input.

amb will only return a subsequent value if it is told that the previous value is not acceptable. One
way of doing that, as we have seen, is by typing “?” at the scheme prompt. We can do the same thing
within our code however, as I'll demonstrate next:

> (list (amb 1 2) (amb ’a ’b))
(1 a)

> 7

(1 b)

> 7

(2 a)

> 7

(2 b)

> ?

Error: no more solutions

Now that’s interesting. There are two calls to amb, and list collects the results. Best we go through
this one step at a time.

1. The expression first returns a list of the first arguments to each call to amb, namely 1 and a.

2. When we tell the interpreter that we’d like to see more results by typing ? at the prompt, the
second amb call intercepts the request and returns its second argument, so the whole expression
returns (1 b).

3. When we ask for a third result, the second amb again intercepts the request, but this time it has
run out of arguments, so it fails to satisfy the request and control propogates back to the first call
to amb. The first amb now returns its second result, 2, and control passes forwards again to the
second amb. This second amb is now being called afresh, as it were, and is back in its initial state
where it returns its first argument, so the whole third result is (2 a).

4. The request for a fourth result proceeds as the request for the second result did, with the second
amb producing b, resulting in (2 b).

5. With the fifth and final request, the second amb again fails, so propogates the failure back to the
first amb, but this time the first amb has also exhausted its results, so propogates the failure back
to the command loop and we get the “error”.

16.1. INTRODUCING AMB 251

The diagram in Figure 16.1 attempts to show this control flow in action'.

Figure 16.1: Control flow during (1ist (amb 1 2) (amb ’a ’b))

read

I
[Qist (amb 1 2) (amb 'a 'b)) |
Error

v

eval
amb 1 2)
)
amb 'a 'b) amb 'a 'b)
E a|*|1b|*|2 a|*|2b|*
list list list list

So in what way does this demonstrate that we can control the backtracking behaviour of amb? Simple.
When amb itself fails it propogates control back to the chronologically previous call to amb, just as typing a
“?” at the prompt does. When the second amb call ran out of options in the example, control propogated
back to the first amb call. Now a call to amb with no arguments must immediately fail, because it has no

arguments to choose from:

LOf course none of this would be possible without continuations. Only with c¢ps do we have a situation where Read ()
calls Eval() and so forth, but that’s best left for Section 16.3 on page 266, which discusses implementation.

252 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

> (amb)
Error: no more solutions

So calling amb with no arguments forces any previous amb to deliver up its next value?. We can wrap
that behaviour in a function that tests some condition, and forces another choice if the condition is false.
That function is called require:

(define require
(lambda (x)
(if x x (amb))))

The return value of x if the test succeeds is merely utilitarian, it is the call to amb with no arguments
if the test fails that is important. So how can we use requre? Well for example let’s assume we have
a predicate even? that returns true if its argument is even. We can use that to filter the results of an
earlier amb:

> (let ((x (amb 1 2 3 4 5 6)))
> (begin

> (require (even? x))
> x))

2

> 7

4

> 7

6

> 7

Error: no more solutions

The expression (require (even? x)) filtered out the odd values of x, so only the even values were
propogated to the result(s) of the expression.

You should be starting to see how amb and CPs are deeply interlinked, and how backtracking can
therefore return to any chronologically previous point in the computation, not just “down the stack” to
a caller of the code that initiates the backtracking.

16.2 Examples of amb in Action

Now we know what amb does, what can we use it for? That example with (require even? x) above
should give you some idea, but in a word: search?.

16.2.1 The “Liars” Puzzle

Consider the following logic problem, one of a classic and simple type?.

2However you can’t type (amb) at the prompt instead of “?” to prompt backtracking on the previous “problem” because
the interpreter reguards anything other than “?” as the start of a new “problem.”

3I’m not talking about searching the web, I mean searching for solutions to problems.

“This puzzle appears as an exercise in [1, p420] and they in turn accredit Hubert Philips, 1934, The Sphinx Problem
Book.

16.2. EXAMPLES OF AMB IN ACTION 253

Liars

Five schoolgirls sat for an examination. Their parents—so they thought—showed an undue
degree of interest in the result. They therefore agreed that, in writing home about the
examination, each girl should make one true statement and one untrue one. The following
are the relevant passages from their letters:

Betty: “Kitty was second in the examination, I was only third.”

Ethel: “You'll be glad to hear that I was on top. Joan was second.”

Joan: “I was third, and poor old Ethel was bottom.”

Kitty: “I came out second. Mary was only fourth.”

Mary: “I was fourth. Top place was taken by Betty.”

What in fact was the order in which the five girls were placed?

amb makes it easy to solve this type of problem by merely enumerating all the possibilities then eliminating
those possibilities that are wrong in some way:

> (define liars

> (lambda O

> (let ((betty (amb 1 2 3 4 5))

> (ethel (amb 1 2 3 4 5))

> (joan (amb 1 2 3 4 5))

> (kitty (amb 1 2 3 4 5))

> (mary (amb 1 2 3 4 5)))

> (begin

> (require (distinct? (list betty ethel joan kitty mary)))
> (require (xor (eq? kitty 2) (eq? betty 3)))
> (require (xor (eq? ethel 1) (eq? joan 2)))
> (require (xor (eq? joan 3) (eq? ethel 5)))
> (require (xor (eq? kitty 2) (eq? mary 4)))
> (require (xor (eq? mary 4) (eq? betty 1)))
> > ((betty ,betty)

> (ethel ,ethel)

> (joan ,joan)

> (kitty ,kitty)

> (mary ,mary))))))

liars

> (liars)

((betty 3) (ethel 5) (joan 2) (kitty 1) (mary 4))

The bindings in the let supply all possible grades to each of the girls, then the first require in the body
of the let makes sure that all the girls have different grades: the distinct? function only returns true if
there are no duplicates in its argument list. I’ll show you the implementation, and that of other functions
here, later. The remaining requirements simply list the two parts of each girl’s statement, requiring that
one is true and one is false: the xor (exclusive or) function returns true only if one of its arguments is
true and the other is false. The eq? function tests if two expressions are equal.

254 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

So we start out by requiring that all five girls have distinct positions in the exam results. The we go
on to require that exactly one of each of the girls two statements is true. Finally we build and return
a list of pairs of the girl’s names, and the associated positions that satisfy all the requirements, using
quote and unquote.

Of course this is horribly inefficient. There are 55 = 3125 permutations of betty, ethel, joan, kitty
and mary, and that first distinct requirement forces a re-evaluation of all but 5! = 120 of them?®, so
about 96% of the initial possibilities are pruned at the first step, and backtracking is provoked. In fact,
when writing tests for this amb example, this single function took so long to run (about 14 seconds on
my laptop) that I was forced to find ways to optimize it. The optimizations demonstrate some additional
behaviour of amb, so here’s the optimized version:

(define liars
(lambda O
(let* ((betty (amb 1 2 3 4 5))
(ethel (one-of (exclude (list betty)
(1ist 1 2 3 4 5))))
(joan (one-of (exclude (list betty ethel)
(1ist 1 2 3 4 5))))
(kitty (one-of (exclude (list betty ethel joan)
(list 1 2 3 4 5))))
(mary (car (exclude (list betty ethel joan kitty)
(1ist 1 2 3 4 5)))))
(begin
(require (xor (eq? kitty 2) (eq? betty 3)))
(require (xor (eq? ethel 1) (eq? joan 2)))
(require (xor (eq? joan 3) (eq? ethel 5)))
(require (xor (eq? kitty 2) (eq? mary 4)))
(require (xor (eq? mary 4) (eq? betty 1)))
> ((betty ,betty)
(ethel ,ethel)
(joan ,joan)
(kitty ,kitty)
(mary ,mary))))))

It starts out as before, setting betty to an amb choice from the available positions, but then calls a couple
of new functions to calculate the value for ethel and the rest of the girls. exclude returns a list of all
the elements in its second list that aren’t in its first list. So for example if betty is 1, then ethel only
gets the choice of values 2 through 5. I'll show you exclude later. one-of is more interesting, since
it makes use of require and amb. It does the same thing as amb, but takes a single list of values as
argument rather than individual arguments:

(define one-of
(lambda (1st)
(begin
(require lst)
(amb (car 1st) (one-of (cdr 1st))))))

5Yes, a practical application of the factorial function!

16.2. EXAMPLES OF AMB IN ACTION 255

Firstly it requires that the list is not empty, then it uses amb to choose either the car of the list, or
one-of the cdr of the list. This in fact demonstrates that amb must be a special form: this function
would not work if amb had its arguments evaluated for it; if both arguments to that second amb were
evaluated before amb saw them then one-of would get recursively executed until the list was empty, then
the first amb to be actually invoked would be the one that terminates recursion when (require 1lst)
fails, so this function would always fail if amb were a primitive.

Back to our optimized liars example. The use of let* instead of let makes the values of the
previous bindings available to subsequent ones. By the time we get to assigning to mary, there is only
one choice left, so we just take it with car rather than using one-of. Since our values are now guaranteed
to be distinct, we can remove that explicit requirement from the code, and the optimized version runs
in a little under a second on the same machine.

As promised, here are the rest of the scheme functions needed to implement the solution to the “Liars”
puzzle and other examples seen earlier. You can skim these if you’re not interested in the details, they
don’t really do anything new.

To make these functions easier to write (and read) I've introduced the boolean short circuiting special
forms and and or to this version of the interpreter: (and a b) will return a without evaluating b if a is
false, and (or a b) will return a without evaluating b if a is true.

Some of these functions also make use of not. and and or have been added as special forms to the
interpreter and so interact with the amb rewrite, so you’ll have to wait to see those, but not is just:

(define not
(lambda (x)
(if x 0 1)))

And so to our support routines. Firstly even?:

(define divisible-by
(lambda (n)
(lambda (v)
(begin
(define loop
(lambda (o)
(if (eq? o W)
1
(Aif > o V)
0
(loop (+ o mn))))))
(Loop 0)))))

(define even?
(lambda (a)
((divisible-by 2) a)))

This is really just demonstrating the functional programming style that Scheme promotes®. The function
divisible-by takes an argument number n and returns another function that will return true if its

Sand that we can still get away without a “/” primitive.

256 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

argument is divisible by n. It creates an inner loop method which loops over 0,n,2n,3n ... until either
equal to or greater than the number being tested. even? uses this to create a function that tests for
divisibility by 2, and calls it on its argument a. It is total overkill to do it this way, but fun.

Next distinct?:

(define distinct?
(lambda (1st)
(if 1st
(and (not (member? (car 1lst) (cdr 1lst)))
(distinct? (cdr 1st)))
1))

distinct? says if the list is not empty, then it is distinct if its first element (its car) is not a member
of the rest of the list and the rest of the list is distinct. If the list 4s empty, then it is distinct. distinct
makes use of another function, member?, shown next.

(define member?
(lambda (item 1lst)
(if 1st
(or (eq? item (car 1st))
(member? item (cdr 1st)))

0))

member? determines if its argument item is a member of its argument lst. It says if the list is not
empty, then the item is a member of the list if it is equal to the car of the list or a member of the cdr of
the list. The item is not a member of an empty list. member? uses another function eq? to test equality,
but that’s been added to the interpreter as a primitive, so we’ll leave that for later.

Next up for consideration is xor. xor takes two arguments and returns true only if precisely one of
those arguments is false.

(define xor
(lambda (x y)
(or (and x (not y))
(and y (nmot x)))))

Lastly for the support routines, our optimized example made use of exclude which returns its second
argument list after removing any items on its first argument list. It’s easy to do now that we have
member?:

(define exclude
(lambda (items 1st)
(if 1st

(if (member? (car 1lst) items)
(exclude items (cdr 1st))
(cons (car 1st)

(exclude items (cdr 1st))))
O

For a non-empty list: if the first element is to be excluded then just return the result of calling exclude
on the rest of the list. If it is not to be excluded, then prepend it to the result of calling exclude on the
rest of the list. For an empty list the only result can be the empty list.

16.2. EXAMPLES OF AMB IN ACTION 257

16.2.2 Barrels of Fun

Our next example is another logic puzzle, from [2]. It is somewhat different, but requires much the same
approach.

Barrels of Fun
A wine merchant has six barrels of wine and beer containing:

e 30 gallons
e 32 gallons
e 36 gallons
e 38 gallons
e 40 gallons
e 62 gallons

Five barrels are filled with wine and one with beer. The first customer purchases two barrels
of wine. The second customer purchases twice as much wine as the first customer. Which
barrel contains beer?

Here’s a solution:

(define barrels-of-fun
(lambda ()
(let* ((barrels (list 30 32 36 38 40 62))
(beer (one-of barrels))
(wine (exclude (list beer) barrels))
(barrel-1 (one-of wine))
(barrel-2 (one-of (exclude (list barrel-1) wine)))
(purchase (some-of (exclude (list barrel-1 barrel-2) wine))))
(begin
(require (eq? (* 2 (+ barrel-1 barrel-2))
(sum purchase)))
beer))))

Again, it is more or less just a statement of the problem. We start off by picking the beer barrel at
random. Then we say that the wine barrels are the remaining barrels. Next we randomly pick the first
barrel of wine bought from the wine barrels, and the second from the remaining wine barrels. We don’t
know how many barrels the second customer bought, so we merely assign some-of the remaining barrels
to that purchase. Finally in the body of the let we require that the second customer buys twice as much
wine as the first, then return the beer barrel (the answer is 40 by the way).

We haven’t seen some-of before. It is very similar to one-of described above, and makes direct use
of amb.

(define some-of
(lambda (1st)
(begin

258 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

(require 1st)
(amb (list (car 1st))
(some-of (cdr 1st))
(cons (car 1st)
(some-of (cdr 1st)))))))

It requires the list to be non-empty, then chooses between just the first element of the list (as a list), some
of the rest of the list, or the first element prepended to some of the rest of the list. This will eventually
produce all non-empty subsets of the list.

The only other function we haven’t seen before is sum. It adds all the values in its argument list and
is quite trivial:

(define sum
(lambda (1st)
(if 1st
(+ (car 1st)
(sum (cdr 1st)))
0)))

The sum of a list is the car of the list plus the sum of the cdr of the list. The sum of an empty list is
Z€ro.

16.2.3 Pythagorean Triples

As another example of amb, consider generating so-called pythagorean triples, triples of integers x, y and
z such that x2 + y2 = 22. This should be pretty easy.

> (define square
> (lambda (x)
> (x x x)))
square
> (define pythagorean-triples
> (lambda ()
(let ((x (amb 1 234567 8))
(y (amb 1 234567 8))
(z (amb 1 23456789 10 11 12)))
(begin
(require (eq? (+ (square x)
(square y))
(square z)))
Y((x ,x) (v ,y) (z ,2))))))
pythagorean-triples
> (pythagorean-triples)
((x 3) (y 4 (z 5))
> 7
((x 4) (y 3) (z 5))

> ?

V V V V V V V V

16.2. EXAMPLES OF AMB IN ACTION 259

((x 6) (y 8) (z 10))

> 7

((x 8) (y 6) (z 10))

> 7

Error: no more solutions

And so it was. After defining square, we pick some ranges of numbers x, y and z, then require that
the sum of the squares of x and y equals the square of z.

Although it is simple and easy to understand, that’s a terribly naiive implementation. We just guessed
the range 1...8 for x and y based on a fixed range 1...12 for z. Plus the result includes duplicates: ((x
3) (y 4) (z 5)) is the same as ((x 4) (y 3) (z 5)). Plus, the number of results is constrained by
the highest value of z, altogether not very satisfactory.

With the addition of a couple more functions, we can remedy all of these deficiencies. Firstly, here’s
a function integers-between that will ambivalently return every number between its lower bound and
its upper bound, in ascending order:

(define integers-between
(lambda (lower upper)
(begin
(require (<= lower upper))
(amb lower
(integers-between (+ lower 1) upper)))))

It begins by requiring that its lower bound is less than or equal to its upper bound, then ambivalently
returns first the lower bound, then the result of calling itself with its lower bound incremented by one.
Thinking about it, if we were to remove the bounds check from integers-between it would continue
to produce new integers, one at a time, ad-infinitum, and without the bounds check it would have no
need for the upper bound argument. That realisation gives us our second function, integers-from:

(define integers-from
(lambda (%)
(amb x
(integers-from (+ x 1)))))

This function will just carry on returning one integer after another as long as it is backtracked to.
Given these two simple functions we can write a much more satisfactory version of
pythagorean-triples:

(define pythagorean-triples
(lambda (O
(let* ((z (integers-from 1))
(x (integers-between 1 z))
(y (integers-between x z)))
(begin
(require (eq? (+ (square x)
(square y))
(square z)))

((x ,x) (v ,y) (z ,2))))))

260 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

It uses let* to make the value of z available to the definition of x, and likewise the value of x available
to the definition of y, much as in the liars puzzle above. It lets z equal each of the positive integers in
turn, then it lets x range over the values 1 to z. Then, to avoid duplication, it only allows y to range over
the values x to z. The rest of the implementation is unchanged. It’s a little slow, but it will continue to
generate unique pythagorean triples as long as you keep asking it for more:

> (pythagorean-triples)
((x 3) (y 4) (z 5))

> 7

((x 6) (y 8) (z 10))
> 7

((x B) (y 12) (z 13))
> 7

((x 9) (y 12) (z 15))
> 7

((x 8) (y 15) (z 17))
> 7

((x 12) (y 16) (z 20))
> ?

(x 7) (y 24) (z 25))
> ?

To wrap up this section, although it should be obvious, it’s probably worth pointing out that there is a
pitfall to using amb to generate infinite sequences like this. The function integers-from can never fail,
so unless it is the first call to amb in your program, any previous calls to amb will never get backtracked to.
This works out pretty well for pythagorean-triples: since we need the current value of z to constrain
the values of x, the call to integers-from had to happen first, but even if we hadn’t needed the value
of z first, we would still have to have calculated it first, otherwise any previous calls to amb would never
get a chance to yield more than their first result. For example the following just won’t work:

(let ((x (integers-from 1))
(y (integers-from 1))
(z (integers-from 1)))

The last call to integers-from to provide the value of z, when backtracked to (by hitting “?” or by
some downstream call to amb), would just keep on producing values, so the declarations of x and y would
never get backtracked to and never produce alternative values.

16.2.4 Parsing Natural Language

Our last example of amb is a little different. It turns out that amb is extremely useful for parsing. Because
amb can backtrack and is capable of trying many alternative strategies, it is much more powerful than

16.2. EXAMPLES OF AMB IN ACTION 261

any simple bottom-up parser like the one used to parse PScheme itself. In fact it is quite capable of
parsing some restricted subsets of natural language.

To understand what follows, it is essential to realise that even set!, when backtracked through, will
have its effect undone. This is what is meant by “chronological backtracking”: chronological backtrack-
ing really does restore the state of the machine to a previous time, as if nothing since the amb being
backtracked to ever happened. I think that is quite amazing.

To start the discussion on parsing, consider the following two English sentences:

e “Time flies like an arrow.”

e “Fruit flies like a bannanna.”

Although superficially very similar, the two sentences have radically different structures and semantics:
Time, “the indefinite continued progress of existence” is noted to always fly forward in the manner of an
arrow, wheras fruit flies of the genus Melanogaster are known to be quite partial to bannanas.

This demonstrates quite vividly that it is in fact impossible to correctly parse natural language
without involving semantics, and of course it is impossible to extract the semantics without parsing; a
chicken and egg problem that I hope to show amb can neatly circumvent.

Drawing on old school grammar lessons, Figure 16.2 shows a reasonable parse tree for the first
sentence. It consists of the noun “time” and a verb phrase. The verb phrase consists of the verb “flies”
and a prepositional phrase. The prepositional phrase consists of the preposition “like” and a noun phrase.
The noun phrase consists of the determinant “an” and the noun “arrow”.

Figure 16.2: One possible parse of “Time flies like an arrow”

sentence

noun verb phrase

verb prep phrase

prep noun phrase

det noun
{time} {flies} {Iike} {an} {arrow}

Similarily, Figure 16.3 on the next page shows a parse tree for the second sentence. This time the
sentence breaks down into the classic noun phrase plus verb phrase structure (as did the first, but the
noun phrase just contained a noun). The noun phrase contains the adjective “fruit” and the noun “flies”.
The verb phrase contains the verb “like” and another noun phrase. This second noun phrase consists of
the determinant “a” and the noun “bannanna”.

In order to parse these sentences, we can start off by categorizing the individual words:

262 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

Figure 16.3: A parse tree for “Fruit flies like a bannanna”

sentence
noun phrase verb phrase
adj noun verb nhoun phrase
det noun

{fruitJ {flies} @ bannanna

(define verbs ’(verb flies like))

(define nouns >(noun time fruit flies bannanna arrow))
(define determinants ’(det a an))

(define adjectives ’(adj time fruit))

(define prepositions ’(prep like))

The first symbol on each list identifies the type of the rest of the words on the list. Note that a number
of the words occur on more than one of the lists: “like” acts as a preposition in the first sentence, while
it is a verb in the second. Similarily “flies” is the verb in the first sentence, but a noun in the second.
Additionally, I've added a couple of categorisations that aren’t needed to parse those sentences correctly,
but would nonetheless be present in a sufficiently general lexicon: “fruit” is certainly a noun, and “time”
is a perfectly acceptable adjective (“time travel” for example). These additional classifications are exactly
what cause us to do that double take when we first encounter these two sentences, and will make the
parsing more realistic.

Next we create a global variable *unparsed* to hold the words remaining to be parsed. this is initially
defined to be empty:

(define *unparsed* ())
Then we define a top level parse routine:

(define parse
(lambda (input)
(begin
(set! *unparsed* input)
(let ((sentence (parse-sentence)))
(begin

(require (not *unparsedx))
sentence)))))

parse starts by setting the global *unparsed* to its argument. Then it calls parse-sentence, collecting
the result. Finally it requires that there is nothing left in *unparsed* and returns the result of
parse-sentence.

16.2. EXAMPLES OF AMB IN ACTION 263

Readers who appreciate the dangers of global state and mutation might be wondering what on earth
is going on here. A function that accepts an argument then just assigns it to a global variable? Worse,
it then proceeds to mutate that global as the parse proceeds? Surely that is the antithesis of good
programming? There is a very sound reason that it is done this way, and that is to demonstrate what
amb is capable of. Please bear with me.

parse will be called like (parse ’(fruit flies like a bannanna)) and should return a parse tree
with the nodes of the tree labelled, like:

(sentence (noun-phrase (adj fruit)
(noun flies))
(verb-phrase (verb like)
(noun-phrase (det a)
(noun bannanna))))

We have seen that parse calls parse-sentence, and we shall see shortly that parse-sentence calls
out to other parse-noun-phrase etc. routines to futher break down the sentence. The various parse-*
routines all indirectly consume tokens from the global *unparsed* variable, but the only function that
directly removes tokens from *unparsedx is the function parse-word:

(define parse-word
(lambda (words)
(begin
(require *unparsedx)
(require (member? (car *unparsedx) (cdr words)))
(let ((found-word (car *unparsed*)))
(begin
(set! *unparsed* (cdr *unparsedx))
(list (car words) found-word))))))

The argument words will be one of the lists of words defined above, where the car is the type of the words
and the cdr is the actual words to be recognized. Hence the use of car and cdr to get the appropriate
components.

So parse-word is called like (parse-word nouns) and will succeed and return a list of a type and a
word if the first word of *unparsedx is one of its argument words. For example if *unparsed= is ’> (flies
like an arrow) and we call (parse-word nouns) it should return the list (noun flies) and as a side
effect set *unparsedx to > (like an arrow).

parse-word requires that there are tokens left to parse, then requires that the first word of
xunparsed* is a member of its list of candidate words. If so then it removes the first word from
xunparsed* and returns it, appended to the category of words that matched. If there are no words left
to parse, or if the next word in *unparsed* is not one of the argument words, then parse-word fails
and control backtracks to the previous decision point where the next alternative is tried. It is important
to remember here that the effect of set! on *unparsed* can be undone by the backtracking of amb.

Back to parse. parse calls parse-sentence:

(define parse-sentence
(lambda ()
(amb (list ’sentence

264 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

(parse-word nouns)
(parse-verb-phrase))
(1ist ’sentence
(parse-noun-phrase)
(parse-verb-phrase)))))

parse-sentence ambivalently chooses to parse either the structure of the first sentence or the structure
of the second. It prepends the result with the appropriate grammatical label just as parse-word did.
Since the second part of both sentences is the same (a verb phrase) we could equivalently have said:

(define parse-sentence
(lambda (O
(list ’sentence
(amb (parse-word nouns)
(parse-noun-phrase))
(parse-verb-phrase))))

In fact this second formulation is likely to be more efficient since it doesn’t have to backtrack through
parse-verb-phrase unneccessarily.

Next let’s look at parse-verb-phrase. Our two example verb phrases are different. The first consists
of a verb and a prepositional phrase, the second consists of a verb and a noun phrase. We can combine the
two, eliminating the duplication on verbs for a slightly more efficient parse. Here’s parse-verb-phrase

(define parse-verb-phrase
(lambda ()
(1ist ’verb-phrase
(parse-word verbs)
(amb (parse-prep-phrase)
(parse-noun-phrase)))))

Going bredth-first from parse-sentence, next up is parse-noun-phrase:

(define parse-noun-phrase
(lambda O
(list ’noun-phrase
(amb (parse-word adjectives)
(parse-word determinants))
(parse-word nouns))))

We have two example noun phrases: an adjective followed by a noun and a determinant followed by a
noun. Again we’ve removed the duplication, this time on the noun.

Lastly, we have to parse prepositional phrases, of which we have only one example: a preposition
followed by a noun phrase:

(define parse-prep-phrase
(lambda ()
(1ist ’prep-phrase
(parse-word prepositions)
(parse-noun-phrase))))

16.2. EXAMPLES OF AMB IN ACTION 265

With these definitions in place, we can attempt to parse our two sentences (output reformatted manually
to aid readability):

> (parse ’(time flies like an arrow))
(sentence (noun time)
(verb-phrase (verb flies)
(prep-phrase (prep like)
(noun-phrase (det an)
(noun arrow)))))
> 7
(sentence (noun-phrase (adj time)
(noun flies))
(verb-phrase (verb like)
(noun-phrase (det an)
(noun arrow))))
> 7
Error: no more solutions

and

>(parse ’(fruit flies like a bannanna))
(sentence (noun fruit)
(verb-phrase (verb flies)
(prep-phrase (prep like)
(noun-phrase (det a)
(noun bannanna)))))
> 7
(sentence (noun-phrase (adj fruit)
(noun flies))
(verb-phrase (verb like)
(noun-phrase (det a)
(noun bannanna))))
> 7
Error: no more solutions

So while time does indeed fly like an arrow, and fruit flies are fond of bannannas, other valid parses of
the sentences imply that some strange creatures called “time flies” are attracted to arrows, and that fruit
does fly much like a bannanna does.

What makes this really exciting is that we are still in backtracking mode when the parse is complete.
If we don’t like a particular result we can request further results by hitting “?” at the prompt, but this
option is also available to client code of the parser: Subsequent downstream analysis of the result may
reject it on semantic grounds (fruit can’t fly, no such thing as “time flies”), and request an alternative
parse.

So you’ve seen what amb can do. The rest of this chapter discusses its implementation.

266 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

16.3 Implementing amb

The core idea behind amb is to use an additional continuation to let us do backtracking. Instead of just
passing around one continuation that specifies the point of return for the called function, we pass around
two continuations. The first continuation is the same as before, and that takes care of normal control
flow. The second continuation is a “failure” continuation of no arguments that gets called by amb when it
runs out of options, and by the repl when you type in a “?”. That failure continuation resumes execution
at the previous decision point.

Here’s a useful analogy to help keep track of what is going on. If you consider normal control flow,
both calls to methods and calls (returns) to normal continuations to be always “downstream” towards
the successful production of a result, then the invocation of the failure continuation causes control to
pass back “upstream” to a previous point in the computation and resume from there.

The initial failure continuation is passed to Read () by the repl to produce the “no current problem”
error and restart the repl (in fact Error () already restarts the repl for us). Then when the repl invokes
Eval() on an expression it has read, it passes an alternative “no more solutions” failure continuation
which again calls Error(). These initial failure continuations are as far “upstream” as you can get
because they exist before the computation is even attempted.

Now if amb is invoked, it replaces the current failure continuation with a new one that, if called, will
cause amb either to pass its next value back “downstream” again (to the success continuation) or, if there
are no more choices, to retreat even further “upstream” to the previous failure continuation. That’s all
we have to achieve really, the rest of this chapter is just the details.

There are however another couple of places where the failure continuation needs to be treated specially.
Remember my little rant about purely functional languages at the start of Section 10.1 on page 1237
Well in a purely functional language there would be no such extra places, because it is only side effects
that need to be undone as the failure continuation backtracks upstream through them. Both define and
set! need to install their own failure continuations that will undo whatever change they made, then call
the previous failure continuation to continue back upstream.

As you might have guessed, amb requires another rewrite of our interpreter. However this time the
rewrite is, on the whole, a purely mechanical one. Apart from the places mentioned above, the failure
continuation is always simply passed through untouched. It is an extra argument to all the methods that
take a continuation argument, and the success continuations themselves now all take an extra failure
continuation as argument too, since the failure continuation must not be lost track of.

16.3.1 Changes to Continuations

Notice that we now have three kinds of continuation: a success continuation for normal control flow, a
failure continuation for backtracking, and let’s not forget the continuation of no arguments returned to
the trampoline to clear the stack. It was becoming obvious that if I just stuck with cont{} to create
all continuations, I would have to start to litter the code with comments to the effect of “this is the
success continuation”, “this is the failure continuation” etc. It makes much more sense to make the
original PScm::Continuation class abstract, and to have concrete subclasses for each of these types.
Then, instead of the generic cont{} construct to create a continuation, we now have three separate
prototyped subroutines to create continuations of the appropriate type. The cont{} construct still
creates the “normal” continuations, but new constructs fail{} and bounce{} create the other types of
continuation.
So without further ado, here’s the new abstract PScm::Continuation class:

16.3. IMPLEMENTING AMB 267

001 package PScm::Continuation;
002

003 use strict;

004 use warnings;

005 use base qw(PScm::Expr);

006

007 require Exporter;

008

009 push our Q@ISA, qw(Exporter);

010

o11 our QEXPORT = qw(bounce cont fail);

012

013 sub new {

014 my ($class, $cont) = @_;

015 bless { cont => $cont }, $class;

016 }

017

o018 sub cont (&) {

019 my ($cont) = @_;

020 return PScm::Continuation: :Cont->new($cont);
021 }

022

023 sub fail(&) {

024 my ($fail) = @_;

025 return PScm::Continuation::Fail->new($fail);
026 }

027

028 sub bounce (&) {

029 my ($bounce) = @_;

030 return PScm::Continuation: :Bounce->new($bounce) ;
03t }

The cont sub now creates a PScm::Continuation::Cont object instead of a PScm::Continuation
object. The new fail and bounce subs are completely analogous.

Additionally, instead of the three new continuation classes sharing a common Cont() method to
invoke the continuation, Cont() has been moved to the PScm::Continuation::Cont class, and the
PScm::Continuation::Fail class has a Fail () method. These are both almost identical to the earlier
generic Cont () method, but expect the correct number of arguments etc. The old Bounce () method,
which invoked the continuation directly, has just been moved into the PScm::Continuation::Bounce
class.

16.3.2 Mechanical Transformations of the Interpreter

I don’t want to show you those other PScm::Continuation derived classes yet, because that would
jump the gun on the passing of the new failure continuation around in Apply() etc. Instead, now we
know what fail{} and bounce{} do, lets take a look at some examples of how this mechanical rewrite
of the interpreter will proceed.

268 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

The default Eval () method in PScm::Expr demonstrates the simplest kind of transformation. The
previous version simply called its continuation on $self, so by default expressions evaluate to themselves.
The new amb version takes an extra $fail continuation as argument, and passes it along to the original
continuation as an extra argument:

o016 sub Eval {

017 my ($self, $env, $cont, $fail) = O_;
018 $cont->Cont ($self, $fail);
019 }

Next up, let’s take a look at transforming an example method that creates a new continuation. The
PScm: :SpecialForm: :Let: :Apply () method does that. It extends the current environment with the
new bindings for the let expression, passing a continuation that will evaluate the body of the let in
that new environment. The new version for amb is not that different. As you can see all the method
calls that used to take a single continuation as argument now take an extra $fail continuation, and the
original continuations themselves now take an extra $fail continuation, passing it to any method that
now expects it. Otherwise, it’s unchanged:

013 sub Apply {

014 my ($self, $form, $env, $cont, $fail) = O_;
015

016 my ($symbols, $values, $body) = $self->UnPack($form);
017

018 $env->Extend (

019 $symbols, $values,

020 cont {

021 my ($newenv, $fail) = @_;

022 $body->Eval ($newenv, $cont, $fail);
023 ts

024 $fail

025);

026 }

Please note however that there are two $fail variables here. The first one is passed to Apply () as
argument on Line 14 and gets passed on as an additional argument to Extend () on Line 24. The second
$fail is argument to the new continuation on Line 21 and is passed on as an additional argument to
Eval() on Line 22. It is very important that these two $fail variables are kept distinct.

Before we finally get around to some code that actually does more than just pass the failure con-
tinuation around, let’s take a look at a fairly involved use of continuations, and the (still mechanical)
transformation that amb requires of it. In Section 8.5.1 on page 92 we introduced PScm: :Expr: :List::
Pair::map_eval(), which evaluates each component of its list and returns an arrayref of those evaluated
components. That method was introduced even earlier in our CPs rewrite in Section 13.6.2 on page 188
and was finally reunited with its original list implementation in Section 13.6.5 on page 206 where it deals
with both continuations and true PScheme lists. Here’s PScm: :Expr: :List: :Pair: :map_eval() so far:

157 sub map_eval {
158 my ($self, $env, $cont) = @_;

16.3. IMPLEMENTING AMB 269

159

160 $self->[FIRST]->Eval(

161 $env,

162 cont {

163 my ($evaluated_first) = @_;

164 $self->[REST]->map_eval(

165 $env,

166 cont {

167 my ($evaluated_rest) = @_;

168 $cont->Cont ($self->Cons($evaluated_first,
169 $evaluated_rest));
170 }

171);

172 }

173);

174 }

And here it is after the amb changes:

171 sub map_eval {

172 my ($self, $env, $cont, $fail) = @_;

173

174 $self->[FIRST]->Eval(

175 $env,

176 cont {

177 my ($evaluated_first, $fail) = @_;

178 $self->[REST]->map_eval(

179 $env,

180 cont {

181 my ($evaluated_rest, $fail) = @_;
182 $cont->Cont (

183 $self->Cons($evaluated_first,
184 $evaluated_rest),
185 $fail

186)

187 J

188 $fail

189)3

190 ts

191 $fail

192);

193 }

It’s a bit longer, but I hope you can see that the only change is that extra $fail argument alongside
each passed continuation, and as an extra argument to any continuation which is actually called. Note
again that it’s very important that each continuation actually declares its extra argument. Although the
same $fail variable name is used throughout, the actual scope of each variable is different, and could
easily have a different value. Having said that, this is the main reason that this rewrite is so mechanical.

270 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

16.3.3 Remaining Continuation Changes

Now that we’ve seen examples of how the failure continuation gets passed around, it’s safe to return to
our PScm::Continuation classes and show the details of the various methods therein. Firstly, here’s
the PScm::Continuation::Cont class.

034 package PScm::Continuation::Cont;
035

036 use strict;

037 use warnings;

038 use base qw(PScm::Continuation);

039
040 BEGIN {

041 *cont = \&PScm: :Continuation::cont;

042 *bounce = \&PScm::Continuation: :bounce;

043 }

044

045 sub Apply {

046 my ($self, $form, $env, $cont, $fail) = @_;
047 $form->map_eval(

048 $env,

049 cont {

050 my ($evaluated_args, $fail) = @_;
051 $self->Cont ($evaluated_args->first, $fail);
052 J

053 $fail

054);

055 }

056

057 sub Cont {

058 my ($self, $arg, $fail) = @_;

059

060 bounce { $self->{cont}->($arg, $fail) }

061 }

We have to manually import the cont and bounce subroutines from PScm::Continuation because
they’re in the same file (a failure of use base.) Then on Lines 45-55 we see the Apply () method for
continuations (remember call/cc presents continuations as functions so they need an Apply () method.)
Apply () is unchanged except for the passing of the extra $fail continuation. This means that the failure
continuation is kept track of even through the use of call/cc.

Lastly the Cont () method is similarily unchanged except that it uses bounce{} instead of cont{}
to create a PScm::Continuation::Bounce for the trampoline, and of course it has the extra $fail
continuation to pass on.

PScm::Continuation::Fail is somewhat shorter:

064 package PScm::Continuation::Fail;
065

16.3. IMPLEMENTING AMB 271

066 use strict;
067 use warnings;
068 use base qw(PScm::Continuation);

069

o70 BEGIN { *bounce = \&PScm::Continuation::bounce; }
071

o72 sub Fail {

073 my ($self) = @_;

074 bounce { $self->{cont}->() }

o075}

Again we must manually import the bounce{} construct that we need, but then the Fail(), method,
which takes no arguments, merely returns a bounce{} continuation to the trampoline that will invoke
the failure continuation with no arguments.

PScm::Continuation::Bounce is even shorter. It’s single Bounce () method, again with no argu-
ments, directly invokes its stored continuation as it always did.

078 package PScm::Continuation: :Bounce;
079

080 use strict;

081 use warnings;

082 use base qw(PScm::Continuation);
083

084 sub Bounce {

085 my ($self) = @_;

086 $self->{cont}->0);

087 }

088

089 1;

So back to the rewrite. How about actually doing something with the failure continuation? As I've said,
there are only a few places in the interpreter where a new failure continuation is constructed, namely

e in the Apply () method for amb iteslf;
e in the Apply () method for define;
e in the Apply () method for set!;

e in the repl.

These are the only places in the interpreter where the amb rewrite is not purely mechanical. We’ll go
through these cases in the same order, starting with PScm: : SpecialForm: : Amb: : Apply ().

272 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

16.3.4 amb Itself

amb is the whole point of this chapter, and so deserves some attention. This special form must evaluate
and return its first argument “downstream” when it is called, but if control backtracks to it then it must
return its next argument, and so on, until the argument list is exhausted at which point it should invoke
the failure continuation that it was originally called with and backtrack further upstream:

477 package PScm::SpecialForm: :Amb;
478

479 use base qw(PScm::SpecialForm) ;
480

481 use PScm::Continuation;

482

483 sub Apply {

484 my ($self, $choices, $env, $cont, $fail) = @_;
485 if ($choices->is_pair) {
486 $choices->first->Eval(
487 $env,

488 $cont,

489 fail {

490 $self->Apply(
491 $choices->rest,
492 $env,

493 $cont,

494 $fail

495)

496 }

497)

498 } else {

499 $fail->Fail();

500 }

501 }

502

503 1;

It’s really not that bad. It takes the same arguments as any normal Apply() method, including the
extra failure continuation. On Line 485 it tests to see if the argument $choices (the actual arguments
to the amb function) is the empty list. If $choices is not empty, then on Line 486 it evaluates the first
choice, passing the original success continuation $cont which will return the result downstream to the
caller. But instead of just passing in its argument $fail continuation, on Lines 489-496 it passes a new
fail{} continuation that will, if backtracked to, call Amb: : Apply () again on the rest of the arguments.
Note that on Line 494 the new failure continuation passes amb’s original failure continuation to Amb: :
Apply (). So if amb itself decides to backtrack by calling that, control will pass immediately back to
whatever failure continuation was in place before amb installed this new one. If on the other hand
the new failure continuation is ever invoked downstream of this, it will cause control to proceed back
upstream to this occurence of amb which then returns its next value back downstream via Apply() to
the current success continuation.

16.3. IMPLEMENTING AMB 273

If the list of arguments is empty, then on Line 499 Apply() invokes its original argument $fail
continuation causing execution to immediately backtrack further upstream.

16.3.5 Changes to define

Next, let’s take a look at define. define installs its symbol/value pair in the current environment frame,
reguardless of the presence or absence of any previous binding. The amb version of define must undo
whatever it did if it is backtracked through, so it needs to remember the previous value, if any. Here’s
the amb version of PScm: :SpecialForm: :Define: : Apply():

331 sub Apply {

332 my ($self, $form, $env, $cont, $fail) = @_;
333 my ($symbol, $expr) = $form->value;

334 my $o0ld_value = $env->LookUpHere ($symbol) ;
335

336 $expr->Eval(

337 $env,

338 cont {

339 my ($value, $fail) = @_;

340 $cont->Cont(

341 $env->Define ($symbol, $value),
342 fail {

343 if (defined $o0ld_value) {
344 $env->Assign($symbol, $old_value);
345 } else {

346 $env->UnSet ($symbol) ;
347 }

348 $fail->Fail();

349 }

350);

351 J

352 $fail

353)

354 }

define in the previous version evaluated its value part in the current environment, passing a continuation
that would call the top environment frame’s Define () method on the symbol and the result. This new
version must additionally keep track of the previous value of the symbol, if any, and arrange that its failure
continuation restores that value before backtracking further. Apart from the extra $fail argument, the
first thing that is new is that on Line 334 it calls a new method PScm: :Env: : LookUpHere () which only
looks in the top frame and returns either the value of the argument symbol or undef. Then things
proceed as normal apart from the extra $fail continuation until Lines 342-349 where a replacement
fail{} continuation is passed to define’s original success continuation.

That new fail{} continuation checks to see if the $old_value is defined. If it is, then it calls
Assign() on the environment to restore the old value. If it is not defined (there was no previous value)
then it must call a new method of PScm::Env, UnSet (), to remove the binding from the top frame. In
either case, it finally returns through the original $fail continuation to backtrack further upstream.

274 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

The location of the fail{} is quite subtle, in fact an earlier version of this code had a bug that
went unnoticed for a considerable time. Consider the following PScheme fragment (assume x is already
defined):

(define x (cons (amb 1 2) x))

Obviously, when backtracking, we want the previous value of x to be restored before we cons the next
value from amb on to it, otherwise we would be breaking the semantics of chronological backtracking. i.e.
if x starts out as (5), then after the first time throught it will obviously be (1 5), and the second time
through it should be (2 5).

Now, referring to Figure 16.4, think about the order that things happen here. Passing continuations
is much like tearing a function into two or more pieces: the first piece is the “head” of the function,
before it makes any calls of its own. The remaining pieces are the continuations that it passes to the
functions that it calls. This figure omits many details, but you can see that define calls cons which
calls amb, then amb calls the continuation of cons which in turn calls the waiting continuation of define.
By the way this is another example of CPS being a simplification in that it linearizes control flow.

Figure 16.4: define installs a failure continuation last

@ ®

define §—> cons §—> amb —>§ cons —>§ define

In this figure, “downstream” is left to right and “upstream” is right to left. Additionally the circles
represent new failure continuations being created and passed downstream. If control backtracks upstream
into this piece of code, it will first encounter the most recently installed, e.g. the rightmost failure
continuation. You can see that amb installs a new failure continuation at 1, and that in order for define
to have its failure continuation supplant the one set up by amb it must be created downstream of amb’s.
Therefore it is define’s success continuation that must install the failure continuation, at 2 in the figure.

If instead the initial code on entry to define had installed the failure continuation at 0 (by passing
it as the last argument to the outermost Eval), then backtracking would find amb’s failure continuation
first, and define would not get a chance to undo its effect before amb sent its next value downstream
again.

That was the bug of course, setting up the failure continuation at 0 instead of 2—it works almost all
of the time, unless evaluation of the second argument to define or set! results in a call to amb.

16.3.6 Changes to set!

Next we're going to look at set!. set! searches the environment for a binding and replaces it, throwing
an error if no binding can be found. First of all, here’s the new definition for PScm: :SpecialForm: :
Set::Apply(O):

208 sub Apply {
209 my ($self, $form, $env, $cont, $fail) = @_;
210 my ($symbol, $expr) = $form->value;

16.3. IMPLEMENTING AMB 275

211 my $o0ld_value = $env->LookUpNoError ($symbol) ;
212 $expr->Eval(

213 $env,

214 cont {

215 my ($val, $fail) = @_;

216 my $result = eval { $env->Assign($symbol, $val) };
217 if ($0) {

218 $self->Error($0, $env);

219 } else {

220 $cont->Cont (

221 $result,

222 fail {

223 $env->Assign($symbol, $old_value);
224 $fail->Fail();

225 }

226);

227 }

228 +s

229 $fail

230);

231 }

This is similar to PScm: :SpecialForm: :Define: :Apply () above, but it uses another new method of
PScm::Env, LookUpNoError () to see if the variable being set had a previous value in any frame. Then
it proceeds as it did, Passing a continuation to the Eval() of the expression that will call Assign()
on the environment, trapping any error. But then it installs a new failure continuation that will, if
invoked, restore the previous value and backtrack further. This new failure continuation just assigns the
previous value and backtracks. It need not worry that there was no previous value, since in that case the
code in the success continuation would have invoked Error (), thus restarting the repl, and the failure
continuation would never be backtracked through.

The same subtleties described in define apply here: set! must pass its new failure continuation to
the original success continuation passed to set!, rather than to the eval of the value to be assigned, in
case that evaluation contains an amb. The set! failure continuation that undoes the mutation must be
backtracked through before any amb failure continuation.

16.3.7 Changes to repl()

It is not without reason that I’ve kept the changes to the repl until last. This is the most complex part of
the amb rewrite. If you remember from Section 13.6.2 on page 188 ReadEvalPrint () now calls a helper
routine repl () to do the heavy lifting, and it is repl () that we see here undergoing significant change.
However there is nothing here that is really new, now that you’ve seen the mechanics of the rest of the
rewrite. It is mostly complicated because the original repl () method was already complicated. Here’s
repl() from the previous version of the interpreter:

o079 sub repl {
080 my ($env, $reader, $outfh) = @_;
081 $reader—->Read(

276 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

082 cont {

083 my ($expr) = @_;

084 $expr->Eval(

085 $env,

086 cont {

087 my ($result) = Q_;
088 $result->Print(

089 $outfh,

090 cont {

091 repl($env, $reader, $outfh);
092 }

093)

094 }

095)

096 }

097)

098 }

As T've said before, it’s really just Read () called with a continuation that calls Eval () with a continuation
that calls Print () with a continuation that calls repl() again. As before there are going to be extra
failure continuations passed around, but that part of the rewrite is purely mechanical. The additional
complications are because repl () must additionally install the final upstream failure continuations, and
additionally must check if the expression just read is a “?” request to backtrack. Bearing all that in
mind it’s really not too bad:

087 sub repl {

088 my ($env, $reader, $outfh, $faill) = @_;

089 $faill ||= fail { __PACKAGE__->Error("no current problem", $env) };
090 $reader->Read (

091 cont {

092 my ($expr, $fail2) = O_;

093 $expr->Eval(

094 $env,

095 cont {

096 my ($result, $fail3) = @_;

097 $result->Print(

098 $outfh,

099 cont {

100 my ($dummy, $faild) = @_;

101 repl($env, $reader, $outfh, $faild);

102 +,

103 $fail3

104)

105 }s

106 fail {

107 __PACKAGE__->Error("no more solutions", $env);

108 }

16.3. IMPLEMENTING AMB 277

109)
110 J

111 $faill
112)

113 }

To aid readability somewhat, I’ve named the various occurences of the failure coninuation separately:
$faill, $fail2 etc. They could all just be called $fail without breaking anything, but it would be
more confusing.

The $faill argument to repl () is optional. Neither Error () nor the new_thread() call that initially
installs the repl on the trampoline bother to pass one. If no failure continuation is passed, then on Line
89 repl () defaults it to a call to Error() with a “no current problem” message.

Then, as before repl() calls Read() with a continuation that will call Eval() etc. Read() itself
changes slightly however: if it reads a “?” it will invoke the current failure continuation.

If the expression read is not a retry request, then everything proceeds as normal, bar the extra failure
continuations: Eval() is called with a continuation that calls Print () with a continuation that calls
repl() again. Note that on Line 101 the continuation passed to Print () calls repl() with its argument
failure continuation $faild, which is how backtracking works when a “?” is read subsequently.

One last thing to notice. On Lines 106-108 The failure continuation passed to Eval() produces the
“no more solutions” error, which will be printed if required before repl() reinstates the default “no
current problem” failure.

As mentioned above, Read () has changed a little. Here’s the new definition:

094 sub Read {

095 my ($self, $cont, $fail) = @_;
096 my $res = $self->_read();

097 return undef unless defined $res;
098 if ($res->is_retry) {

099 $fail->Fail();

100 } else {

101 $cont->Cont ($res, $fail);

102 }

103 }

Before returning its value, Read () must first check that the expression it is about to pass to its success
continuation is not “?”. On Line 98 Read () checks to see if the expression returned by _read() is a retry
request. is_retry() is defined to return false in PScm::Expr, but PScm::Expr::Symbol redefines
this to return true if the symbol’s value () is “?”. If it is a retry request, Read () invokes its argument
failure continuation. At the very start this will be the "no current problem" error, so typing “7” at a
fresh PScheme prompt will produce this error.

That’s really all there is to amb. The rest of this section joins the dots by showing the support routines
that I've glossed over.

278 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

16.3.8 Additional Changes

There’s not really many of those to describe. If you remember there were a couple of extra methods added
to PScm::Env to aid define and set! in undoing their changes. The first of these was LookUpHere ():

159 sub LookUpHere {

160 my ($self, $symbol) = @_;

161 if (exists($self->{bindings}{ $symbol->value })) {
162 return $self->{bindings}{ $symbol->value };
163 } else {

164 return undef;

165 }

166 }

LookUpHere () just checks the current frame to see if the binding exists. It is called by our new define
to save any previous value before define replaces it.
Next is LookUpNoError():

149 sub LookUpNoError {

150 my ($self, $symbol) = @_;

151

152 if (defined(my $ref = $self->_lookup_ref ($symbol))) {
153 return $$ref;

154 } else {

155 return undef;

156 }

157 }

It uses the existing _lookup_ref () method to locate the symbol, either dereferencing and returning the
value if it was found, or returning undef. LookUpNoError() is called by set! before assigning a new
value to the found variable.

The other addition to PScm::Env was an UnSet () method which would remove a binding from the
environment.

191 sub UnSet {

192 my ($self, $symbol) = @_;
193 delete $self->{bindings}{ $symbol->value };
194 }

This method just deletes a binding from the current frame. It is only called by define when backtracking
to remove the setting that define added to the current environment frame, so it need not, and should
not recurse.

Finally, and most trivially, there is an is_retry() method of PScm::Expr, so that the continuation
passed to Read () can ask politely if the expression just read is a request to backtrack (“?”). The base
PScm::Expr class defines this to be false as a default:

014 sub is_retry { O }

But PScm::Expr::Symbol redefines this to return true if the symbol’s value() is "7".

16.4. SUPPORT FOR TESTING AMB 279

281 sub is_retry {

282 my ($self) = @_;
283 return $self->value eq "7";
284 }

16.4 Support for Testing amb

The examples at the start of this chapter in Section 16.1 on page 249 made use of quite a few support
functions of various sorts. Most of those functions could be defined directly in the PScheme language,
but a few remaining functions were left to be implemented in the interpreter itself. Specifically, those
functions were:

e and and or. Both are special forms so that arguments do not get evaluated unnecessarily and
short-circuit evaluation is possible.

e Numeric inequality tests >, <, >= and <=.

e A general equality test eq?. This function will work for numbers, symbols, strings and lists (two
lists are considered eq? if their cars are eq? and their cdrs are eq?)”.

16.4.1 and and or

It is best to make these both special forms, so that they do not evaluate their arguments unnecessarily.
In fact they share quite a bit in common with the existing begin special form. begin evaluates all its
arguments in turn, wheras and and or evaluate each of their arguments until some condition is met. If
you remember from Section 13.6.7 on page 211, PScm: : SpecialForm: :Begin: : Apply () called out to a
helper function apply next () if its argument list was non-empty. What I’ve done is to create a common
abstract base class PScm::SpecialForm::Sequence for all of begin, and and or, because they can all
share a common Apply () method:

234 package PScm::SpecialForm: :Sequence;

235

236 use base qw(PScm::SpecialForm) ;

237

238 sub Apply {

239 my ($self, $form, $env, $cont, $fail) = @_;
240 if ($form->is_pair) {

241 $self->apply_next($form, $env, $cont, $fail);
242 } else {

243 $cont->Cont ($form, $fail);

244 }

245 }

PScm::SpecialForm::Begin inherits from that to get its Apply() method, its apply next() is un-
changed other than having the extra failure continuation:

"This differs from scheme which has separate equality tests for symbols and lists, for efficiency reasons.

280 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

249 package PScm::SpecialForm: :Begin;

250

251 use base qw(PScm::SpecialForm::Sequence);
252 use PScm::Continuation;

253

254 sub apply_next {

255 my ($self, $form, $env, $cont, $fail) = C_;
256

257 $form->first->Eval(

258 $env,

259 cont {

260 my ($val, $fail) = @_;

261 if ($form->rest->is_pair) {

262 $self->apply_next($form->rest, $env, $cont, $fail);
263 } else {

264 $cont->Cont ($val, $fail);

265 }

266 +s

267 $fail

268)

269 }

PScm::SpecialForm::And reimplements apply next() to return false as soon as an evaluated value
is false. If all of the arguments to and are true, and returns the value of the last argument.

272 package PScm::SpecialForm: :And;

273

274 use base qw(PScm::SpecialForm: :Sequence);
275 use PScm::Continuation;

276

277 sub apply_next {

278 my ($self, $form, $env, $cont, $fail) = @_;
279

280 $form->first->Eval(

281 $env,

282 cont {

283 my ($val, $fail) = @_;

284 if ($form->rest->is_pair) {

285 if ($val->isTrue) {

286 $self->apply_next ($form->rest, $env, $cont, $fail);
287 } else {

288 $cont->Cont ($val, $fail);
289 }

290 } else {

291 $cont->Cont ($val, $fail);

292 }

293 1,

16.4. SUPPORT FOR TESTING AMB 281

294 $fail
295);
296 }

PScm::SpecialForm::Or behaves similarily. it evaluates each of its arguments until one of them is
true, in which case it returns that result. If all of its arguments are false, it returns false.

299 package PScm::SpecialForm: :0r;

300

301 use base qw(PScm::SpecialForm: :Sequence) ;

302 use PScm::Continuation;

303

304 sub apply_next {

305 my ($self, $form, $env, $cont, $fail) = @_;
306

307 $form->first->Eval(

308 $env,

309 cont {

310 my ($val, $fail) = @_;

311 if ($form->rest->is_pair) {

312 if ($val->isTrue) {

313 $cont->Cont ($val, $fail);
314 } else {

315 $self->apply_next($form->rest, $env, $cont, $fail);
316 }

317 } else {

318 $cont->Cont ($val, $fail);

319 }

320 1,

321 $fail

322)

323 }

16.4.2 Numeric Inequality Tests

The next thing we’ll need is a numeric inequality test “>”. The full standard set of numeric inequality
tests “<7, “>7 “<="_ and “>=" now exist as primitives in the interpreter. They are all under PScm::
Primitive, in fact they all descend from a subclass of that called PScm::Primitive::Compare which
provides a common _apply() method:

159 package PScm::Primitive::Compare;

160

161 use base qw(PScm::Primitive);
162

163 sub _apply {

164 my ($self, Gnumbers) = Q_;

165 $self->_check_type($numbers[0], ’PScm::Expr::Number’) if Gnumbers;

282 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

166 while (@numbers > 1) {

167 my $number = shift @numbers;

168 $self->_check_type ($numbers[0], ’PScm::Expr: :Number’) ;
169 return PScm: :Expr: :Number->new(0)

170 unless $self->_compare ($number, $numbers[0]);

171 }

172 return PScm: :Expr::Number->new(1);

173 }

So they all take an arbitrary number of arguments like the arithmetic primitives. For example (<=
2 3 3 4) is true because each argument is “<=" the next argument. _apply() iterates over its argu-
ments, checking each one is a number and calling a separate _compare() method on each pair. The
_compare () method called on Line 170 is implemented separately by each of PScm::Primitive::Lt,
PScm::Primitive::Gt, PScm::Primitive::Le and PScm::Primitive::Ge. They all go exactly the
same way, so for example here’s PScm::Primitive::Lt:

176 package PScm::Primitive::Lt;

177

178 use base qw(PScm::Primitive::Compare);

179

180 sub _compare {

181 my ($self, $first, $second) = @_;

182 return $first->value < $second->value;
183 }

Only the actual comparison operator differs between the implementations.

16.4.3 eq?

Finally eq?. The eq? implementation is a bit more interesting. It can be used to compare any PScheme
data types that inherit from PScm::Expr. Equality is a relative term however. For instance, unlike
Perl, a string and a number will never be considered equal, however two lists with the same content are
considered equal. Here’s the new PScm::Primitive::Eq class:

145 package PScm::Primitive: :Eq;

146

147 use base qw(PScm::Primitive);

148

149 sub _apply {

150 my ($self, @things) = @_;

151 while (@things > 1) {

152 my $thing = shift @things;

153 return PScm: :Expr: :Number->new(0) unless $thing->Eq($things[0]);
154 }

155 return PScm: :Expr: :Number->new(1);

156 }

16.4. SUPPORT FOR TESTING AMB 283

As you can see, like the inequality tests above, it will take an arbitrary number of arguments. Apply ()
keeps comparing adjacent arguments by calling their Eq() method until a test fails, or all tests pass.
The Eq() method is defined differently for various types of PScm::Expr. A default method in the base
PScm::Expr just compares object identity:

040 sub Eq {

041 my ($self, $other) = @_;
042 return $self == $other;
043 }

This means that, for example, two functions with the same arguments, env and body would still not be
considered equal. This could be fixed, but I'm not sure it’s worth it.

Anyway PScm::Expr::Atom overrides this Eq() method to do a string comparison on the (scalar)
values of the two objects, first checking that the two objects are of the same type. This is good enough
for strings, numbers and symbols:

092 sub Eq {

093 my ($self, $other) = @_;

094 return O unless $other—>isa(ref($self));
095 return $self->value eq $other->value;
096 }

PScm: :Expr::List::Pair::Eq() is more interesting. Firstly it does a quick check for object identity,
that will save unnecessary recursion if the two objects are actually the same object. Then it checks that
the object is a list, and finally it recursively calls itself on both first() and rest() to complete the
test:

228 sub Eq {

229 my ($self, $other) = Q_;

230 return 1 if $self == $other;

231 return O unless $other->is_pair;

232 return $self->[FIRST]->Eq($other->[FIRST]) &&
233 $self->[REST]->Eq($other->[REST]) ;

234 }

Last of the Eq() methods is in PScm::Expr::List::INull. This method returns true only if the other
object is also a PScm::Expr::List::Null, since null is only equal to null:

255 sub Eq {

256 my ($self, $other) = @_;
257 return $other->is_null;
258 }

16.4.4 Wiring it up

Finally, here’s the additional methods wired in to ReadEvalPrint(). You can also see that on Line
67 the new_thread() routine installs a bounce{} continuation that starts the repl. That continuation
doesn’t pass a failure continuation to repl(), so repl() will default that to the Error: no current
problem error.

284

035 sub ReadEvalPrint {

036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080

CHAPTER 16. CHRONOLOGICAL BACKTRACKING

my ($infh, $outfh) = @_;
$outfh ||= new FileHandle(">-");
my $reader = new PScm::Read($infh);

my $initial_env;

$initial_env = new PScm: :Env(

let => new PScm::SpecialForm::Let(),
2% => new PScm::Primitive::Multiply(),
-0 => new PScm::Primitive::Subtract(),
140 => new PScm::Primitive::Add(),
if => new PScm: :SpecialForm::If(),
lambda => new PScm::SpecialForm: :Lambda(),
list => new PScm::Primitive::List(),
car => new PScm::Primitive::Car(),
cdr => new PScm::Primitive::Cdr(),
cons => new PScm::Primitive::Cons(),
letrec => new PScm: :SpecialForm: :LetRec(),
’let*’ => new PScm::SpecialForm::LetStar(),
eval => new PScm::SpecialForm: :Eval(),
macro => new PScm::SpecialForm::Macro(),
quote => new PScm::SpecialForm: :Quote(),
’set!’ => new PScm::SpecialForm::Set(),
begin => new PScm::SpecialForm: :Begin(),
define => new PScm::SpecialForm: :Define(),
’make-class’ => new PScm::SpecialForm::MakeClass(),
’call/cc’ => new PScm: :SpecialForm::CallCC(),
print => new PScm: :SpecialForm: :Print($outfh),
Spawn => new PScm: :SpecialForm: :Spawn(),
exit => new PScm::SpecialForm: :Exit(),
error => new PScm: :SpecialForm: :Error(
$outfh,
bounce { repl($initial_env, $reader, $outfh) }
),
amb => new PScm::SpecialForm::Amb(),
’eq?’ => new PScm::Primitive::Eq(),
1> => new PScm::Primitive::Gt(),
1K) => new PScm::Primitive::Lt(),
I>=? => new PScm::Primitive::Ge(),
K=" => new PScm::Primitive::Le(),
and => new PScm::SpecialForm::And(),
or => new PScm::SpecialForm::0r(),

);

$initial_env->Define(
PScm: :Expr: :Symbol->new("root"),

16.5. SUMMARY AND DIRECTIONS 285

081 PScm: :Class: :Root->new($initial _env)

082);

083 __PACKAGE__->new_thread(bounce { repl($initial_env, $reader, $outfh) });
084 trampoline();

085 }

16.5 Summary and Directions

amb demonstrates a very simple but unfortunately inefficient mechanism for embedding so-called “non-
deterministic” programming into an otherwise procedural language. The term “non-deterministic” means
that the control flow through the interpreter is not, on the surface, determined solely by a single set of
conditions at a particular point: there are choices available.

The main reason that amb is so inefficient is that it uses what is called “chronological backtracking”.
It really is as though the interpreter “winds back the clock” when a condition fails, going back to a prior
moment in time and retrying a different choice at that point. Of course this is an illusion, but a useful
and simple analogy to use. However chronological backtracking is a brute-force approach to search, since
all possible solutions are attempted and in a typical search the vast majority of these possible solutions
are discarded (remember the distinct function in the first solution to the “Liars” puzzle.)

There are alternatives to chronological backtracking. They are beyond the scope of this chapter, but
to give you some idea, the most popular and successful of these alternatives is known as dependancy-
directed backtracking. This technique gains more control over the next choice made by noting the reason
for the previous failure and avoiding choices that would again produce the same failure. For example, in
the “Liars” puzzle from Section 16.1 on page 249, if one of the conditions fails, for instance (xor (eq?
kitty 2) (eq? Dbetty 3)), it is only the choices of kitty and betty that cause the failure, but naiive
chronological backtracking would try many other alternatives before actually arriving at any choices that
affect that failure. Dependancy-directed backtracking on the other hand, would backtrack directly to
those choice points.

While simple enough to describe, dependancy-directed backtracking is by no means easy to implement
in practice.

I mentioned in the introduction to this chapter that amb was one step towards a logic programming
language. As I’ve just described some sort of dependancy-directed backtracking is a necessary second
step for any production-quality language. The third component to logic programming is a very special
and interesting technique called unification. Ignoring any efficiency concerns that amb might have, we
will nonetheless be looking at unification, and how it facilitates logic programming, in the next chapter.

16.5.1 An Alternative Implementation

Before finally moving on from amb it is worth considering a slightly different, and potentially more
powerful approach to its implementation. There is a design pattern called Parameter Object which goes
something like this: “If you are always passing the same set of parameters around from method to method,
then wrap those parameters in a single object and pass it as a single parameter.” Now the $cont and
$fail parameters of amb are perfect candidates for the application of this pattern. The main reasons I
haven’t done it are 1. T wanted to keep the code explicit, and 2. the cont{} and fail{} constructs would
have to be made a lot cleverer in order to manipulate an existing composite continuation parameter.
However if we had gone for the Parameter Object pattern, there would have been a very interesting
payoff: if you could have two continuations, why not three? four? etc. Why might you want such a

286 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

thing? Well, imagine a language where all the control flow (for and while loops, break, continue,
return etc.) were implemented by continuations. Then a for loop would install break and continue
continuations (and uninstall them again), a subroutine would install a return continuation, etc.

Even more exciting, consider an environment of continuations as a parameter object. Then for
example nested for loops would push and pop their break and continue continuations. It would then
be relatively easy to break or continue or return to an arbitrary containing point.

These alternatives, while exciting, are left as an open exercise should you wish to pursue them.

16.6 Tests

The first set of tests in Listing 16.7.1 on the next page tries out or equality and inequality operators. It’s
nice to know they all work as expected.

The next set of tests in Listing 16.7.2 on page 289 exercizes the new repl itself ensuring that the appro-
priate error messages are produced after various requests for backtracking, and that the repl recovers
gracefully in all situations.

The last set of tests, in Listing 16.7.3 on page 290 gives amb a thorough workout. It tests most of the
examples that we have seen in this chapter, plus a few more for good measure. Additionally, it tests that
set! and define do in fact undo their assignments in the face of backtracking

16.7. LISTINGS 287

16.7 Listings

16.7.1 t/PScm Compare.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1lib ’./t/1lib’;

005 use PScm::Test tests => 38;

006

007 BEGIN { use_ok(’PScm’) }

008

009 eval ok(’(eq? 1 1)’, ’1’, ’eq numbers’);

010 eval ok(’(eq? 1 2)’, ’0’, ’neq numbers’);

011 eval ok(’(eq? 1 "1")’, ’0’, ’neq numbers and strings’);

012 eval_ok("(eq? 1 ’a)", ’0’, ’neq numbers and symbols’);

013 eval_ok("(eq? 1 (list 1))", ’0’, ’neq numbers and lists’);

014

015 eval_ok(’(eq? "a" "a")’, ’1’, ’eq strings’);

016 eval ok(’(eq? "a" "b")’, ’0’, ’neq strings’);

017 eval_ok(’(eq? "1" 1)’, ’0’, ’neq strings and numbers’);

018 eval_ok(’(eq? "a" \’a)’, ’0’, ’neq strings and symbols’);

019 eval_ok(’(eq? "a" (list "a"))’, ’0’, ’neq strings and lists’);
020

021 eval ok("(eq? ’a ’a)", ’1’, ’eq symbols’);

022 eval ok("(eq? ’a ’b)", ’0’, ’neq symbols’);

023 eval_ok("(eq? ’a 1)", ’0’, ’neq symbols and numbers’);

024 eval_ok(’(eq? \’a "a")’, ’0’, ’neq symbols and strings’);

025 eval_ok("(eq? ’a (list ’a))", ’0’, ’neq symbols and lists’);
026

027 eval ok("(eq? (list 1 2) (list 1 2))", ’1’, ’eq lists’);

028 eval ok("(eq? (list 1 2) (list 1 2 3))", ’0’, ’neq lists’);
029 eval ok("(eq? (list 1) 1)", ’0’, ’neq lists and numbers’);

030 eval_ok(’(eq? (list "a") "a")’, ’0’, ’neq lists and strings’);
031 eval ok("(eq? (list ’a) ’a)", ’0’, ’neq lists and symbols’);
032

033 eval ok("(eq? (O O)", ’1°, ’eq empty lists’);

034 eval_ok("(eq? () (1list 1))", ’0’, ’neq empty lists’);

035 eval ok("(eq? 1 1 1 1)", °1’, ’eq multiple arguments’);

036 eval ok("(eq? 1 1 1 2)", ’0’, ’neq multiple arguments’);

037

038 eval_ok("(< 1
039 eval_ok("(< 1
040

041 eval_ok(" (<= 1
042 eval_ok("(k= 1
043

044 eval ok("(> 4 3 2 1)", ’1°, ’> multiple arguments’);
045 eval ok("(> 4 3 2 2)", ’0’, ’!> multiple arguments’);
046

047 eval_ok(" (>=
048 eval_ok("(>=
049

2 3 4)", °1’, ’< multiple arguments’);

2 33", ’0’, ’!< multiple arguments’);
3)", ’1’, ’<= multiple arguments’);
2)", ’0’, ’!<= multiple arguments’);

2)", ’1’, ’>= multiple arguments’);
3)", ’0’, ’!>= multiple arguments’);

288 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

050 eval_ok("(and 1 2 3)", "3", ’and success’);

051 eval ok("(and 1 2 () 3)", "()", ’and failure’);
052

053 eval ok("(or 1 2 3)", "1", ’or success’);

054 eval_ok("(or 0 0 3 O)", "3", ’or success [2]7);
055 eval_ok("(or 0 0 O O)", "0", ’or failure’);

056

057 # vim: ft=perl

16.7. LISTINGS 289

16.7.2 t/AMB repl.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1lib ’./t/lib’;

005 use PScm::Test tests => 2;
006

007 BEGIN { use_ok(’PScm’) }
008

009 eval_ok(<<EOT, <<EOR, ’sequential repl and amb’);
o10 1

o011 7 7

012 +1

013 (amb ’x ’y ’z)

014 7 7 77

015 (list (amb 1 2) (amb 5 6))
o6 777

017 (list (amb 1 2) (amb 5 6))
018 (list (amb 1 2) (amb 5 6))
019 EOT

020 1

021 Error: no more solutions
022 Error: no current problem
023 1

024 X

025 y

026 z

027 Error: no more solutions
028 Error: no current problem
029 (1 5)

03 (1 6)

031 (2 5)

032 (2 6)

033 (1 5)

034 (1 5)

035 EOR

036

037 # vim: ft=perl

290

CHAPTER 16.

16.7.3 t/AMB_amb.t

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

use
use
use
use
use

strict;

warnings;

Test: :More;

lib ’./t/1lib’;

PScm: :Test tests => 8;

BEGIN { use_ok(’PScm’) }

my $prereqs = <<EOT;
(define require
(lambda (x)

(if x x (amb))))

(define member?
(lambda (item 1lst)

(if 1st
(if (eq? item (car 1lst))
1
(member? item (cdr 1st)))
0)))

(define distinct?
(lambda (1st)

(if 1st
(if (member? (car 1lst)
(cdr 1st))
0
(distinct? (cdr 1st)))
iDDD)

(define one-of
(lambda (1st)

(begin
(require 1lst)
(amb (car 1st) (one-of (cdr 1st))))))

(define exclude
(lambda (items 1lst)

(if 1st
(if (member? (car 1lst) items)
(exclude items (cdr 1st))
(cons (car 1lst)
(exclude items (cdr 1st))))
O

(define abs
(lambda (x)

(if (< x 0)
(- %)
x)))

CHRONOLOGICAL BACKTRACKING

16.7. LISTINGS 291

052 (define not

053 (lambda (x)
054 (if x 0 1)))
055

056 (define xor

057 (lambda (x y)

058 (or (and x (mot y))
059 (and y (not x)))))
060

061 (define difference
062 (lambda (a b)

063 (abs (- a b))))
064

065 (define divisible-by
066 (lambda (n)

067 (lambda (v)

068 (begin

069 (define test

070 (lambda (o)

071 (if (eq? o v)
072 1

073 (if (> o W)
074 0

075 (test (+ o mn))))))
076 (test 0)))))

077

078 (define even?

079 (lambda (a)

080 ((divisible-by 2) a)))
os1 EOT

082

083 my $prereqs_output = <<EOT;
084 require

085 member?

086 distinct?

087 one-of

088 exclude

089 abs

090 not

091 xor

092 difference

093 divisible-by

094 even?

095 EOT

096

097 $prereqs_output =~ s/\n$//s;
098

099

100 eval_ok(<<EOT, <<EOR, ’even?’);
101 $prereqgs

102 (define test

103 (lambda ()

292 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

104 (let ((x (amb 1 2 3 4 5)))
105 (begin

106 (require (even? x))
107 x))))

108 (test)

109 7

110 7

111 EOT

112 $prereqgs_output

113 test

114 2

115 4

116 Error: no more solutions

117 EOR

118

119 eval_ok(<<EOT, <<EOR, ’Barrels of Fun’);
120 $prereqs

121 (define some-of

122 (lambda (1st)

123 (begin

124 (require 1lst)

125 (amb (1list (car 1lst))

126 (some-of (cdr 1lst))

127 (cons (car 1lst)

128 (some-of (cdr 1st)))))))
129

130 (define sum
131 (lambda (1st)

132 (if 1st

133 (+ (car 1st)

134 (sum (cdr 1st)))
135 0)))

136

137 (define barrels-of-fun
138 (lambda ()

139 (let* ((barrels (list 30 32 36 38 40 62))

140 (beer (one-of barrels))

141 (wine (exclude (list beer) barrels))

142 (barrell (one-of wine))

143 (barrel2 (one-of (exclude (list barrell) wine)))
144 (barrels (some-of (exclude (list barrell barrel2) wine))))
145 (begin

146 (require (eq? (* 2 (+ barrell barrel2))

147 (sum barrels)))

148 beer))))

149 (barrels-of-fun)

150 EOT

151 $prereqgs_output
152 some-of

153 sum

154 barrels-of-fun
155 40

16.7. LISTINGS 293

156 EOR

157

158 # Baker, Cooper, Fletcher, Miller and Smith live on different

159 # floors of a five-storey building. Baker does not live on the
160 # top floor. Cooper does not live on the bottom floor. Fletcher
161 # does not live on the top or the bottom floor. Miller lives

162 # on a higher floor than Cooper. Smith does not live on a

163 # floor adjacent to Fletcher’s. Fletcher does not live on a floor
164 # adjacent to Cooper’s. Where does everyone live?

165

166 eval_ok(<<EOT, <<EOR, ’amb’);
167 $prereqs

168

169 (define multiple-dwelling

170 (lambda Q)

171 (let* ((baker (one-of (list 1 2 3 4)))

172 (cooper (one-of (exclude (list baker) (list 2 3 4 5))))
173 (fletcher (one-of (exclude (list baker cooper) (list 2 3 4))))
174 (miller (one-of (exclude (list baker cooper fletcher)
175 (list 1 2 3 4 5))))

176 (smith (car (exclude (list baker cooper fletcher miller)
177 (1ist 1 2 3 4 5)))))

178 (begin

179 (require (> miller cooper))

180 (require (not (eq? (difference smith fletcher) 1)))

181 (require (not (eq? (difference cooper fletcher) 1)))

182 (list (list ’baker baker)

183 (1ist ’cooper cooper)

184 (1ist ’fletcher fletcher)

185 (1ist ’miller miller)

186 (list ’smith smith))))))

187

188 (multiple-dwelling)

189 EQOT

190 $prereqgs_output

191 multiple-dwelling

192 ((baker 3) (cooper 2) (fletcher 4) (miller 5) (smith 1))
193 EOR

194

195 eval ok(<<EQOF, <<EOR, ’Liars (optimized)’);

196 $prereqs

197 (define liars

198 (lambda ()

199 (let* ((betty (amb 1 2 3 4 5))

200 (ethel (one-of (exclude (list betty)

201 (list 1 2 3 4 5))))

202 (joan (one-of (exclude (list betty ethel)

203 (list 1 2 3 4 5))))

204 (kitty (one-of (exclude (list betty ethel joan)
205 (1ist 1 2 3 4 5))))

206 (mary (car (exclude (list betty ethel joan kitty)

207 (list 1 2 3 4 5)))))

294 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

208 (begin

209 (require (xor (eq? kitty 2) (eq? betty 3)))
210 (require (xor (eq? ethel 1) (eq? joan 2)))
211 (require (xor (eq? joan 3) (eq? ethel 5)))
212 (require (xor (eq? kitty 2) (eq? mary 4)))
213 (require (xor (eq? mary 4) (eq? betty 1)))
214 > ((betty ,betty)

215 (ethel ,ethel)

216 (joan ,joan)

217 (kitty ,kitty)

218 (mary ,mary))))))

219 (liars)

220 7

221 EOF

222 $prereqs_output

223 liars

224 ((betty 3) (ethel 5) (joan 2) (kitty 1) (mary 4))
225 Error: no more solutions

226 EOR

227

228 eval_ok(<<EOF, <<EOR, ’set! backtracking’);
229 (let ((x 1))

230 (let ((y (amb ’a ’b)))

231 (begin

232 (print (list ’x x))

233 (set! x 2)

234 (print (list ’x x))

235 y)))

236 7

237 EOF

238 (x 1)

239 (x 2)

240 a

241 (x 1)

242 (x 2)

243 b

244 EOR

245

246 eval ok(<<EQOF, <<EOR, ’define backtracking’);
247 (define x 1)

248 (let ((y (amb ’a ’b)))

249 (begin

250 (print (list ’x x))
251 (define x 2)

252 (print (list ’x x))
253 y))

254 7

255 EOF

256 X

257 (x 1)

258 (x 2)

259 a

16.7. LISTINGS

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

x 1
(x 2)
b
EOR

eval _ok(<<EOT, <<EOR, ’parsing’);
$preregs

(define proper-nouns ’(john paul))
(define nouns ’(car garage))

(define auxilliaries ’(will has))
(define verbs ’(put))

(define articles ’(the a his))

(define prepositions ’(in to with))
(define degrees ’(very quite))

(define adjectives ’(red green old new))

(define parse-sentance
(lambda ()

(amb (list (parse-noun-phrase)
(parse-word auxilliaries)
(parse-verb-phrase))

(1ist (parse-noun-phrase)
(parse-verb-phrase)))))

(define parse-noun-phrase
(lambda ()
(amb (parse-word proper-nouns)
(1ist (parse-word articles)
(parse-adj-phrase)))))

(define parse-adj-phrase
(lambda ()
(amb (list (parse-deg-phrase)
(parse-adj-phrase))
(parse-word nouns))))

(define parse-deg-phrase
(lambda ()
(amb (list (parse-word degrees)
(parse-deg-phrase))
(parse-word adjectives))))

(define parse-verb-phrase
(lambda ()
(1ist (parse-word verbs)
(parse-noun-phrase)
(parse-prep-phrase))))

(define parse-prep-phrase
(lambda ()
(1ist (parse-word prepositions)

295

296

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

CHAPTER 16. CHRONOLOGICAL BACKTRACKING

(parse-noun-phrase))))

(define parse-word
(lambda (words)
(begin

(require *unparsedx)

(require (member? (car *unparsed*) words))

(let ((found-word (car *unparsedx*)))

(begin

(set! xunparsed* (cdr *unparsed*))
found-word)))))

(define *unparsed* ())

(define parse
(lambda (input)
(begin
(set! *unparsed* input)
(let ((sentance (parse-sentance)))
(begin

(require (not *unparsedx))
sentance)))))

(parse ’(john will put his car in the garage))
(parse ’(paul put a car in his garage))

(parse ’(paul has put a very very old car in his quite new red garage))
EQT

$prereqs_output

proper-nouns

nouns

auxilliaries

verbs

articles

prepositions

degrees

adjectives

parse-sentance

parse-noun—-phrase

parse-adj-phrase

parse-deg-phrase

parse-verb-phrase

parse-prep-phrase

parse-word

unparsedx

parse

(john will (put (his car) (in (the garage))))
(paul (put (a car) (in (his garage))))

(paul has (put (a ((very (very old)) car)) (in (his ((quite new) (red garage))))))
EOR

vim: ft=perl

16.7. LISTINGS 297

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.12.tgz

298 CHAPTER 16. CHRONOLOGICAL BACKTRACKING

Chapter 17

Unification and Logic Programming

This chapter first gives an example of the sort of things that logic programming is capable of, then
gets on with the implementation by introducing the concept of pattern matching. Then it explores a
generalization of pattern matching called unification. Having implemented unification and other more
specialized support routines in the interpreter core, we then proceed, with the help of amb from Chapter 16
on page 249, to build a logic programming system in the PScheme language itself. The advantages of
doing this in a language which has continuation-passing and backtracking built in should become very
apparent by the end of the chapter. This implementation is based on the one given in [7, pp295-300],
but made a little easier by using amb.

17.1 Logic Programming Examples

Logic programs consist of a database of known facts about a problem, and then typically a query or
queries that interrogate this database.

17.1.1 Mary and John

Here is a very simple database of facts about a problem domain.

(define the-rules

> (((mary likes wine))
((mary likes cheese))
((john likes beer))
((john likes wine))
((john likes chips))
((person mary))
((person john))))

Our database is called the-rules and it is a list of statements of various sorts. This database lists facts
about what mary and john like, and also the facts that both mary and john are people. There is nothing
special about the structure of these individual facts, just as long as we remain consistent in their use,
and write queries that interrogate the database appropriately. In other words it is we, the programmers,
who decide the “meaning” of ((mary likes wine)): the system attaches no particular significance to
that structure in itself; in particular likes is not a keyword or an operator of the logic programming
system, it is just a symbol that I have chosen to use.

299

300 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

In our logic programming implementation, we will use symbols with initial capital letters as pattern
variables which can match parts of the database. So given the database above, the system can respond
to a query such as (mary likes X) with the facts (mary likes wine) and (mary likes cheese), and
can respond to the question (person X) with the facts (person mary) and (person john). Of course
there is nothing here that a simple SQL query could not do, so let’s make things more interesting by
adding a rule to the facts.

This rule states “mary likes anyone who likes chips.” This is written as:

((mary likes X) (person X) (X likes chips))

You can read this as “mary likes X if person X and X likes chips.”

Rules all have this general form. The first statement in the rule is true if all of the other statements
in the rule are true or can be proved to be true. The first statement is called the head of the rule, and
the remaining statements are called the body of the rule.

Looked at in this way, bare facts are just rules with no body: they are true in themselves because
there is nothing left to prove. This explains the apparently redundant extra parentheses around each
fact in our example database.

Given our extended database, which now looks like this:

(define the-rules

> (((mary likes wine))
((mary likes cheese))
((john likes beer))
((john likes wine))
((john likes chips))
((person mary))
((person john))
((mary likes X) (person X) (X likes chips)))

the system can answer the question (mary likes john) in the affirmative, and furthermore, when
prompted to list all the things that mary likes with (mary likes X), john will be among the results:

> (prove ’((mary likes X)))
> 7

((mary likes wine))

> 7

((mary likes cheese))

> 7

((mary likes john))

Also note that the statement to be proved has those apparently redundant extra braces too. This is
because the system can be asked to prove any number of things at once, for example:

> (prove ’((mary likes X) (X likes beer)))
((mary likes john) (john likes beer))

> 7

Error: no more solutions

)

This can be read as “prove mary likes X and X likes beer.” The query only succeeds if all of the
components succeed, so it is just like the body of a rule in this respect.

17.1. LOGIC PROGRAMMING EXAMPLES 301

17.1.2 J. S. Bach and Family

This type of programming can also be used for recursive search. Figure 17.1 shows a small snippet of
the Bach family tree, with old J. S. at the centre.

Figure 17.1: Bach’s Family Tree

Johann
Ambrosius
Maria Johann Anna
Barbara Sebastian Magdalena
Wilhelm Carl Phillip JC Johann
Friedmann Emanuel Friedrich Christian

WF
Ernst

We can translate that into the following facts:

(((johann ambrosius) father-of (j s)))

(((j c friedrich) father-of (w f ernst)))

(((j s) (anna magdalena) parents-of (j c friedrich)))
(((j s) (anna magdalena) parents-of (johann christian)))
(((j s) (maria barbara) parents-of (wilhelm friedmann)))
(((j s) (maria barbara) parents-of (c p e)))

Now, we have a mixture of facts about fathers alone, and parents where the mother is known. But we
can rectify that with a few extra rules as follows:

((X father-of Y) (X _ parents-of Y))
((X mother-of Y) (_ X parents-of Y))
((X parent-of Y) (X father-of Y))
((X parent-of Y) (X mother-of Y))

That underscore is a special pattern variable that always matches anything. The first rule then says “X
is the father of Y if X and anybody are parents of Y” (the parents-of facts always list the father first.)
Likewise the second rule says “X is the mother of Y if anybody and X are parents of Y.” The last pair of

302 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

rules (actually really one rule in two parts) says that “X is a parent of Y if X is the father of Y or X is the
mother of Y.”
So we have a general way of expressing both and and or in our rules: and is expressed by adjacent
statements in the body of a single rule, while or is expressed as alternative versions of the same rule.
Now that we have a general parent-of relation, we can add a recursive ancestor-of relationship as
follows:

((X ancestor-of Y) (X parent-of Y))
((X ancestor-of Y) (X parent-of Z) (Z ancestor-of Y))

This says “X is an ancestor of Y if X is a parent of Y or X is a parent of some Z and Z is an ancestor of
Y.” Given that definition, and the rest of the facts and rules, we can start to ask interesting questions of
the system:

> (prove ’((X ancestor-of (w f ernst))))

(((j c friedrich) ancestor-of (w f ernst)))

> 7

(((johann ambrosius) ancestor-of (w f ernst)))
> 7

(((j s) ancestor-of (w f ernst)))

> 7

(((anna magdalena) ancestor-of (w f ernst)))

> 7

Error: no more solutions

We can add yet more rules to this database. For example X and Y are siblings if X and Y have the same
parent:

((X sibling-of Y) (Z parent-of X)
(Z parent-of Y)
(require (not (eq? ’X ’Y))))

If we don’t require that X and Y are not equal then this rule would think that old J. S. was his own
brother. Given that, we can ask:

> (prove ’(((c p e) sibling-of X)))
(((c p e) sibling-of (johann christian)))

etc.

17.1.3 Appending Lists

In case you’re starting to think that logic programming is just some sort of glorified database lookup,
here’s a more meaty example. Consider the problem of appending two lists. You can write an append
function in PScheme very easily! as:

LOf course you can define it even more easily in Perl as (@a, @b) but that’s only because Perl already has an append
operation, and so does any complete scheme implementation.

17.1. LOGIC PROGRAMMING EXAMPLES 303

(define append
(lambda (a b)
(if a
(cons (car a)
(append (cdr a)
b))
b)))

It walks to the end of the list a, then at that point returns the list b, and as the recursion unwinds it
builds a copy of a prepended to b. So for example:

> (append ’(a b) ’(c d))
(abcd

This definition is useful enough in itself, but logic programming allows a much more flexible definition
of append as follows:

(define the-rules
(list ’ ((append () Y Y))
>((append (A . X) Y (A . Z)) (append X Y 2))))

Note that this uses the PScheme dotted pair notation introduced in Section 8.4.1 on page 89. So the
expression (A . X) refers to a list who’s car is A and who’s cdr is X.

The first rule says that the result of appending something to the empty list is just that something.
The second rule says that you can join (A . X) and Y to make (A . Z) if you can join X and Y to make
Z.

Why is that more powerful than the PScheme append? Because we can ask lots of questions of it.
Not only can we ask “what do we get if we append (a b) and (¢ d)7”:

> (prove ’((append (a b) (c d) X)))
((append (a b) (c d) (abc d)))

We can also ask “what do we need to append to (a) toget (a b c d e)?”:

> (prove ’((append (a) X (a b c d e))))
((append (a) (b cde) (abcde))

And even “what can we append together to make (a b ¢ d)7”:

> (prove ’((append X Y (a b ¢ d))))
((append () (@b cd) (abc d)))
z(:ppend (a) bcd (abecd))
z(:ppend (ab) (cd (abcd)
E(prend (abc) (d (abcd))
z(:ppend (@abcd O (abcd))

304 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

This idea is absolutely core to the concept of logic programming. A rule that states that “A and B
make C” is equally capable of describing “what do I need to make C?” provided C has a value when the
question is asked. It is as if the relationship described by the rule can be inspected from many different
angles when seeking a solution to a problem.

Back to append. The rules for append can of course be made available to other rules, for example
(peeking ahead a bit)

((sentence S) (append NP VP S) (noun-phrase NP) (verb-phrase VP))

Says S is a sentence if you can append NP and VP to make S, and NP is a noun phrase, and VP is a verb
phrase. Rules for noun-phrase and verb-phrase would be very similar, and rules for individual words
would just be of the form ((noun (garage))) etc.

17.1.4 Factorial Again

The above examples have already demonstrated that our database of rules can be recursive, so how about
the king of recursive functions, our old friend the factorial function? Here it is recast into a pair of rules:

(define the-rules
(list
>((factorial 0 1))
>((factorial N X) (T is (- N 1)) (factorial T U) (X is (x N U)))))

This isn’t as bad as it might first look. The first rule is the bare fact that the factorial of 0 is 1. The
second rule says that the factorial of Nis X if T is N = 1 and the factorial of T is U and X is N * U. The
special infix is operator forces arithmetic evaluation of its right hand side, then requires that its left
hand side is the same as the result of that evaluation.

given the above we can calculate factorials:

> (prove ’((factorial 10 X)))
((factorial 10 3628800))

However there is a limitation here. Because of the unidirectional nature of that is operator, we cannot
ask “what number can we apply factorial to to get x”:

>(prove ’((factorial X 3628800)))
Error: no more solutions

So it goes.

17.1.5 Symbolic Differentiation

If you’re still not impressed, how about a more difficult problem? I hope you don’t mind a little maths.
This next example states some of the rules of symbolic differentiation then asks the system to work out
the differential of an equation. The rules we’ll be using are:

e The derivative of z in x is 1.

e The derivative of any constant number in z is 0.

17.1. LOGIC PROGRAMMING EXAMPLES 305

e The derivative of 2z in z is n x x®1L.

e The derivative of f + g in x is df + dg if the derivative of f in x is df and the derivative of g in x
is dg.

e The derivative of f — g in x is df — dg if the derivative of f in x is df and the derivative of ¢ in x
is dg.

e The derivative of f x g in z is f X dg + g x df if the derivative of f in x is df and the derivative of
g in x is dg.

e The derivative of 1/f in z is —df/f? if the derivative of f in z is df.

e The derivative of f/g in x is (g x df — f x dg)/ f? if the derivative of f in x is df and the derivative
of g in x is dg.

If you don’t remember the maths from school, just sit back and enjoy the ride. These rules can translate
directly into our logic system as:

(define the-rules
(list ’((derivative X X 1))

>((derivative N X 0) (require (number? °N)))

>((derivative (X " N) X (N * (X = P))) (P is (- N 1)))

>((derivative (F + G) X (DF + DG))
(derivative F X DF)
(derivative G X DG))

>((derivative (F - G) X (DF - DG))
(derivative F X DF)
(derivative G X DG))

> ((derivative (F * G) X ((F * DG) + (G * DF)))
(derivative F X DF)
(derivative G X DG))

>((derivative (1 / F) X ((- DF) / (F * F)))
(derivative F X DF))

>((derivative (F / G) X (((G * DF) - (F * DG)) / (G * G)))
(derivative F X DF)
(derivative G X DG))))

This is obviously way more complex than Mary and John, but there isn’t actually much that you haven’t
seen before. The first and most important thing to realise is that, with one exception, the arithmetic
operators “+”7, “-” etc. mean nothing special to the logic program: they are just symbols in patterns
to be matched. Having said that we do need ways to perform numeric tests and to do arithmetic. The
body of second rule requires that N is a number, and the body of third rule evaluates (- N 1) before
“assigning” it to P. Rules of the form (require (expr)) and ((var) is (ezpr)) are recognized and
treated specially by the system.
Anyway, having entered these rules we can ask the system:

306 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

(prove ’((derivative
(((x 7 2) +x) +1)
X

X))
That is to say “prove the differential of 22+ x + 1 in z is X”. The system replies:
((derivative
((x - 2) +x) +1)
X

((@2*x "~ 1)) +1)+0))

The last line is the computed value for X, the pattern variable in the query. For now we will have to
simplify that manually:

((@2* (x~ 1)) +1) +0)
(2 * x) + 1

You can see that the result is indeed the differential of 22 + x + 1, namely 2z + 1.

That should be enough to whet your appetite for what the rest of this chapter has to offer. We next
turn our attention to pattern matching, which is the basis of unification, which along with amb from the
previous chapter is the basis of our logic programming implementation.

17.2 Pattern Matching

The kind of pattern matching we will be discussing here has very little if anything to do with regular
expressions. This sort of pattern matching is about matching a pattern against a structure, not a string,
and furthermore the pattern itself is a structure.

A pattern or a structure, for the purposes of our discussion is a PScheme expression: a string,
number, symbol or list. However a pattern may also contain pattern variables. These are not the normal
variables of PScheme programs: any symbol is a variable in that sense; these are a special type of symbol,
recognised as a variable only by the pattern matching system. As far as the rest of PScheme is concerned,
they are just ordinary symbols. For our purposes a pattern variable will be any symbol that starts with
a capital letter?. Although I'm calling these symbols “pattern variables” here, I'll drop that convention
in future and just call them “variables” when the context makes it clear what I mean.

First let’s look at a few examples of pattern matching.

e The pattern (a b ¢) will only match the structure (a b ¢) because the pattern contains no
variables.

e The pattern (a b ¢) will not match the structure (a b foo) because ¢ does not equal foo.

2A real Scheme implementation is case-insensitive, so does not have this luxury. PScheme is case-sensitive which allows
us to follow the convention of the logic programming language Prolog, where capital letters introduce pattern variables.

17.2. PATTERN MATCHING 307

e The pattern (a X ¢) will match the structure (a b c¢) because the variable X can stand for the
symbol b.

e The pattern X will match the structure (a b ¢) because X can stand for the entire structure.
e The pattern (a X c) will match the structure (a (1 2 3) c¢) because X can stand for (1 2 3).
e The pattern (a (1 X 3) c¢) will match the structure (a (1 2 3) c¢) because X can stand for 2.

e The pattern (a X Y) will match the structure (a b c) because X can stand for b and Y can stand
for c.

e The pattern (a X X) will not match the structure (a b c¢) because the variable X must stand for
the same thing throughout the matching process: it cannot be both b and c.

I'm sure you get the idea by now.

The result of a pattern match is a set of bindings, one for each variable that matched. For example
after matching the pattern (a X Y) against (a (1 2 3) b) the result is the set of bindings X => (1
2 3) and Y => b. This result is much the same as an environment, and we’ll take advantage of this
equivalence later.

17.2.1 A Perl Pattern Matcher

As I've said, pattern matching is merely a precursor to unification, which is our goal. Implementing a
pattern matching system in Pscheme is fairly trivial, either in the PScheme language itself or in the un-
derlying Perl, but we’re not actually going to do that, because it isn’t powerful enough for our purposes.
However we need to start somewhere, so this section discusses a standalone pattern-matching implemen-
tation in Perl. It’s easy enough to understand, and the subsequent section builds on that to produce a
standalone unification implementation. Having arrived at a standalone unification implementation, we
can wire that in to our interpreter.

But first we need to look at pattern matching. This standalone Perl pattern matcher can take patterns
of the form:

[’a’, { b => X}, °Y’]

where capitalized strings represent the pattern variables. It matches them against structures such as
[(’a’, { b =>[2, 3] }, ’c’]

returning a hashref that will look like

{Xx=>1[2, 3], Y= ¢}

Here’s a birds-eye view of how our first pattern matcher will work. It walks both the pattern and the
structure in parallel, also passing an additional, initially empty environment around. If it encounters a
variable in the pattern then it checks to see if the variable is already set in the environment. If it is,
then it checks that the current structure component is the same as the value of the variable, failing if it
is not. If the variable is not set in the environment, it extends the environment, binding the variable to
the current structure component, and continues. Of course matching will also fail if the pattern and the
structure are not otherwise identical. On success, it returns the environment, and on failure, it dies.

308 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

Both for the fun of it, and for completeness’ sake, the pattern matcher described here can handle
perl hashrefs as well as listrefs. This means it will accept patterns and structures containing mixtures of
both types. However only the values of a hash in a pattern will be recognised as pattern variables, the
keys will not.

Here’s the top-level match() routine:

sub match {
my ($pattern, $struct, $env) = @_;
$env | 1= {};

if (var($pattern)) {
match_var($pattern, $struct, $env);
} elsif (hashes($pattern, $struct)) {
match_hashes($pattern, $struct, $env);
} elsif (arrays($pattern, $struct)) {
match_arrays($pattern, $struct, $env);
} elsif (strings($pattern, $struct)) {
match_strings($pattern, $struct, $env);
} else {
fail(Q);
}

return $env;

}

Firstly, if $env is not passed, then match() initializes it to an empty hashref. The pattern matching
algorithm is never required to undo any variable bindings that it creates, so we can just pass around a
hash by reference and allow the bindings to accumulate in it. Then we see various tests for the types of
$pattern and $struct. The var() check is just:

sub var {
my ($thing) = @_;
Iref ($thing) && $thing =~ /" [A-Z]/;

}

So a var is any string that starts with a capital letter.
The hashes () check returns true if both arguments are hashrefs:

sub hashes {
my ($a, $b) = @_;
hash($a) && hash($b);

}

Where hash () is just:

sub hash {
my ($thing) = @_;
ref ($thing) eq ’HASH’;

}

The other two checks, arrays () and strings() are defined equivalently:

17.2. PATTERN MATCHING 309

sub arrays {
my ($a, $b) = @_;
array($a) && array($b);

sub array {
my ($thing) = @_;
ref ($thing) eq ’ARRAY’;

sub strings {
my ($a, $b) = @_;
string($a) && string($b);

sub string {
my ($thing) = @_;
'var ($thing) && !'ref ($thing);

}

Ok, that’s the administrative support out of the way.
So the first thing that match() does, if its $pattern is a var(), is to call match_var() on the
$pattern and the $struct, passing the current environment. Here’s match var():

sub match_var {
my ($var, $struct, $env) = @_;
if (exists($env->{$var})) {
match($env->{$var}, $struct, $env);
} else {

$env->{$var} = $struct;
}

}

It checks to see if the $var is in the environment. If it is then it attempts to match() the value of the
variable against the $struct3. If the $var is not already in the environment then it puts it there with
a value equal to the current $struct (an unassigned variable will always match the current structure
component, and will be instantiated to it.)

Returning to match(), if both the $pattern and the $struct are arrays(), match() calls match -
arrays() on them.

match arrays () walks both arrays in tandem, calling match() on each pair of elements. If the arrays
are not the same length then they cannot possibly match, so this sanity check is performed first:

sub match_arrays {
my ($pattern, $struct, $env) = @_;
my Q@patterns = Q@$pattern;

3We use match() here only because it is convenient: neither the value of the variable nor the structure will contain
variables, so match() is being used as a recursive equality test (like eq?.)

310 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

my Ostructs = @$struct;
if (@patterns != @structs) { fail(); }
while (@patterns) {
match(shift @patterns, shift @structs, $env);

}
}

The £ail() sub dies with a "match failed" message:
sub fail { die "match failed\n"; }

Back to match() again. If the $pattern and the $struct are both hashes(), then match() calls
match _hashes() on them:

sub match_hashes {
my ($pattern, $struct, $env) = @_;
check_keys_eq($pattern, $struct);
foreach my $key (sort keys %$pattern) {
match($pattern->{$key}, $struct->{$key}, $env);
}

}

Much as match_arrays() checks that the two arrays are the same length, match_hashes() checks that
the two hashes have the same keys using check keys_eq():

sub check_keys_eq {
my ($as, $bs) = @_;
my $astr = join(’.’, sort keys %$as);
my $bstr = join(’.’, sort keys %$bs);
fail unless $astr eq $bstr;

}

This is a cheap trick and could easily be fooled, but it’s good enough for our demonstration purposes.

Assuming that the hashes have equal keys (this pattern matcher does not allow—or at least expect—
hash keys to be variables), match_hashes () walks the keys matching the individual components in much
the same way as match_arrays() did. It sorts the keys before traversing them to ensure the order of
any variable assignment is at least deterministic.

Back to match() yet again. If both the $pattern and the $struct are strings(), match() calls
match strings() on them. This is the most trivial of the matching subroutines: it just compares the
strings and fails if they are not equal:

sub match_strings {
my ($pattern, $struct, $env) = @_;
fail if $pattern ne $struct;

}

This completes our prototype pattern matching implementation.
While very simple, this pattern matcher can be made to do useful work. Consider a “database” of
facts in a Perl list:

17.3. UNIFICATION 311

my @facts = (
{
composer => ’beethoven’,
initials => ’1v’,
lived => [1770, 1829]

composer => ’mozart’,
initials => ’wa’,
lived => [1756, 1791]

composer => ’bach’,
initials => ’js’,
lived => [1685, 1750]

)
We can use the matcher to extract information from this list:

foreach my $fact (@facts) {
eval {
my $result = match({
composer => ’COMPOSER’,
initials => ’js’,
lived => ’LIVED’
}, $fact);
print "The composer with initials ’js’",
" is $result->{COMPOSER}",
" who lived from $result->{LIVED}[0]"
" to $result->{LIVED}[1]\n";

-

That’s it for pattern matching. We next turn our attention to Unification, which as I've said is an
extension to Pattern Matching and is much more interesting.

17.3 Unification

Unification, in a nutshell, is the matching of two patterns. It solves the problem “given two patterns,
that might both contain variables, find values for those variables that will make the two patterns equal.”

Our pattern matcher from the previous section is a good jumping off point for implementing true
unification. In fact it has most of the things we’ll need already in place. The next section discusses the
modifications we will need to make to it.

312 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

17.3.1 A Perl Unifier

This unifier can solve a broader class of problems than a simple pattern matcher can. For example given
the two patterns:

e, g, A1, 'A°]
and

[°’f’, ’B’, ’abc’]

It can correctly deduce:

A => ’abc’,

B => [7g> s ’abc’]

You can see the process graphically in Figure 17.2. The variable ’A’ unifies with the term ’abc’ while
the variable *B’ unifies with the compound term [’g’, ’A’], where A’ is provided with a value ’abc’

from the previous unification.

Figure 17.2: Unification of [’£’>, [’g’, ’A’], ’A’] with [’f’, ’B’, ’abc’]

[£ [g A] A]
[£ B abc]
[£ [g abc] abc]

Unification is capable of even more complex resolutions, for example it can unify (ommitting quotes for
brevity this time)

[F, [A, 1, B], [A, B], 2]
with
(c, o, b, EI, C, E]

To show that

e A =1
e B =2
e C =[1, 2]

17.3. UNIFICATION 313

eD =1
o E =2
e F =1[1, 2]

You can see this in action in Figure 17.3 if you just follow the differently styled arrows starting from the
three ringed nodes in the figure as they propogate information around.

Figure 17.3: A more complex unification example

—» Q——p m
>
-
—p e W-——
e € —--—-—

[1 c 1
A }
[r1 21101 1 2 1] [1 2] 2 1]
[]
This unifier has additional feature: the anonymous variable “” (underscore) behaves like a normal

variable but will always match anything, since it is never instantiated. This allows you to specify a
“don’t care” condition. For example, going back to our database of composers, the pattern:

composer => ’COMPOSER’,
initials => ’_7,
lived => ’_°

will just retrieve all of the composers names from the database, without testing or instantiating any other
variables. Not also that since “_” always matches, and is never instantiated, it can be reused throughout
a pattern.

This unifier is a direct modification of the pattern matcher from the previous section, so let’s just
concentrate on the differences. Firstly match() has been renamed to unify (), and it has an extra clause,
in case the old structure, which is now also a pattern, contains variables. The various match_* subs have
also been renamed unify_*, and the variables $pattern and $struct, now both patterns, have been
renamed to just $a and $b:

314 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

sub unify {
my ($a, $b, $env) = 0_;
$env ||= {};

if (var($a)) {
unify_var($a, $b, $env);
} elsif (var($b)) {
unify_var($b, $a, $env);
} elsif (hashes($a, $b)) {
unify_hashes($a, $b, $env);
} elsif (arrays($a, $b)) {
unify_arrays($a, $b, $env);
} elsif (strings($a, $b)) {
unify_strings($a, $b, $env);
} else {
fail(Q);

}

return $env;

The extra clause, if $b is a var, simply reverses the order of the arguments to unify var(). Note that
the single environment means that variables will share across the two patterns. If you don’t want this,
simply make sure that the two patterns don’t use the same variable names.
unify hashes(), unify arrays() and unify strings() are identical to their match_* equivalents,
except that unify_arrays() and unify hashes() call unify () instead of match() on their components.
The var () check is slightly different, to allow for the anonymous variable:

sub var {
my ($thing) = @_;
ref ($thing) && ($thing eq ’_’ || $thing =~ /" [A-Z]/);

}

That leaves unify_var (), where the action is. unify_var() is still quite similar to match_var(), it just
has more things to watch out for:

sub unify_var {

my ($var, $other, $env) = @_;

if (exists($env->{$var})) {
unify($env->{$var}, $other, $env);

} elsif (var($other) && exists($env->{$other})) {
unify($var, $env->{$other}, $env);

} elsif ($var eq ’_?) {
return;

} else {

$env->{$var} = $other;
}

17.3. UNIFICATION 315

So $struct was renamed to $other, and unify var() calls unify() instead of match(). If $var is not
set in the environment, instead of immediately assuming it can match $other, unify var() looks to
see if $other is a var and already has a value. If so it calls unify () on $var and the value of $other.
If $other is not a var, or has no binding, unify var() next checks to see if $var is the anonymous
variable. If it is, then because the anonymous variable always matches and is never instantiated, it just
returns. Lastly, only when all other options have been tried, it adds a binding from the $var to $other
and returns.

Let’s walk through the actions of unify() as it attempts to unify the two patterns [’f’, [’g’,
’A’], ’A’] and [’£f’, ’B’, ’abc’].

e unify([’f’, [’g’, ’A’1, ’A’]1, [’f’, ’B’, ’abc’], {}) is called with the two complete pat-
terns and an empty environment, and determines that both patterns are arrays, so calls unify_-
arrays().

— unify arrays([’f’, [’g’, ’A’1, ’A’]1, [’f’, ’B’, ’abc’], {}) simply calls unify()
on each component.

* unify(’£’, ’f’, ()) determines that both its arguments are strings, and calls unify_-
strings().

- unify_strings(’f’, £’, {}) = {} succeeds but the environment is unchanged.

« unify([’g’, ’A’], ’B’, {}) determines that it’s second argument is a variable and so
calls unify_var () with the arguments reversed.

- unify var(’B’, [’g’, ’A’]1, {}) = {B => [’g’, ’A’]} succeeds, and unify -
var () extends the environment with B’ bound to [’g’>, ’A’].

« unify(’A’, ’abc’, {B => [’g’, ’A’]}) determines that it’s first argument is a vari-
able and so calls unify_var () again, passing the environment that was extended by the
previous call to unify var().

. unify var(’A’, ’abc’, {B => [’g’, ’A’1}) = {B => [’g’, ’A’], A =>
’abc’} also succeeds, extending the environment with a new binding of ’A’ to
>abc’. This environment is the final result of the entire unification.

So the final result {B => [’g’, ’A’], A => ’abc’} falls a little short of our expectations, because the
value for ’B’ still contains a reference to the variable ’A’%. However this is not a problem as such. we
can patch up the result with a separate routine called resolve().

sub resolve {
my ($pattern, $env) = @_;
while (var($pattern)) {
if (exists $env->{$pattern}) {
$pattern = $env->{$pattern};
} else {
return $pattern;
}
}

if (hash($pattern)) {

4In fact it is quite possible to retrieve bindings of one variable directly to another, like {A => ’B’} in other circumstances,
for example if B’ did not have a value when it was unified with *A’.

316 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

my $ret = {};
foreach my $key (keys %$pattern) {

$ret->{$key} = resolve($pattern->{$key}, $env);
}

return $ret;
} elsif (array($pattern)) {
my $ret = [J1;
foreach my $item (@$pattern) {
push @$ret, resolve($item, $env);
}

return $ret;
} else {
return $pattern;

resolve () takes a pattern, and the environment that was returned by unify (). If and while the pattern
is a variable, it repeatedly replaces it with its value from the environment, returning the variable if it
cannot further resolve it. Then if the result is a hash or an array reference, resolve () recursively calls
itself on each component of the result, also passing the environment. The final result of resolve() is a
structure where any variables in the pattern that have values in the environment have been replaced by
those values. Note that resolve() does not change the environment in any way.

This completes our stand-alone implementation of unify (). Hopefully seeing it out in the open like
this will make the subsequent implementation within PScheme easier to digest. It is a little difficult to
demonstrate the utility of unify() at this point, since it’s purpose is mostly part of the requirements
of logic programming, however to give you some idea, consider that the result of one unification, an
environment or hash, can be passed as argument to a second unification, thus constraining the values
that the pattern variables in the second unification can potentially take.

There is one extremely interesting and useful application of unification outside of logic programming
which makes use of this idea. Consider that we might want to check that the types of the variables
in a PScheme expression are correct before we eval the expression. Assume that we know the types of
the arguments and return values from all primitives in the language. Furthermore we can also detect
the types of any variables which are assigned constants directly. It is therefore possible to detect if a
variable’s assigned value does not match it’s eventual use, even if that eventual use is remote (through
layers of function calls) from the original assignment. Such a language, which does not declare types
but is nonetheless capable of detecting type mismatches, is called an implicitly typed language. We can
use unification to do this type checking, by treating PScheme variables as pattern variables and unifying
them with their types and with each other across function calls, accumulating types of arguments and
return values for lambda expressions and functions in the process.

That however, is for another chapter. Next we’re going to look at the implementation of unify in
PScheme.

17.3.2 Implementing unify in PScheme

To get the ball rolling with the implementation of unify, notice that the previous implementation of
unify () frequently tests the types of its arguments. Obviously in an object-oriented implementation

17.3. UNIFICATION 317

like PScheme we can distribute a Unify () method around the various data types and avoid this explicit
type checking for the most part.

A second point worth noting is that where the above unify () did a die on failure, our new Unify ()
can quite reasonably invoke backtracking instead, to try another option, which fits in quite neatly with
our existing amb implementation.

A third and final point. unify() above made use of a flat hash to keep track of variable bindings,
but PScheme already has a serviceable environment implementation and we should make use of it. This
will mean exposing the environment as a PScheme data type since that is what is explicitly passed to
and returned by Unify(), but this is not a concern since we have done this once before in our classes
and objects extension from Chapter 12 on page 135.

We’d better start by looking at the unify command in action in the interpreter. The result of a call
to unify is a PScm::Env which isn’t much direct use. However we can add another PScheme command
that will help us out there. substitute takes a form and an environment, and replaces any pattern
variables in the form with their values from the argument environment. It also performs the resolve ()
function on each value before substitution. So for example:

> (substitute

> >(f B A)
> (unify (£ (g A) A)
> ’(f B abc)))

(f (g abc) abc)

The call to unify provides the second argument, an environment, to substitute, which then performs
the appropriate replacements on the expression (f B A) to produce the result (f (g abc) abc). Note
that in all cases we have to quote the expressions to prevent them from being evaluated. We do need
the interpreter to evaluate the arguments to substitute and unify in most cases however, because the
actual forms being substituted and unified may be passed in as (normal PScheme) variables or otherwise
calculated.

I should probably also demonstrate that unify does proper backtracking if it fails:

> (unify ’(a b c) ’(a b d))
Error: no more solutions

It’s still somewhat difficult to demonstrate the usefulness of unify combined with amb at this stage
however. That will have to wait until the next section where we finally get to see logic programming in
action.

The first thing we need to do then, is to create a new special form PScm::SpecialForm::Unify
and give it an Apply() method. This special form will be bound to the symbol unify in the top-
level environment. unify will take two or three arguments. The first two arguments are the patterns
to be unified. The third, optional argument is an environment to extend. If unify is not passed an
environment, it will create a new, empty one. We have to make unify a special form because it needs
access to the failure continuation. Here’s PScm::SpecialForm::Unify:

504 package PScm::SpecialForm: :Unify;
505

506 use base qw(PScm::SpecialForm) ;
507

318 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

508 use PScm::Continuation;

509

510 sub Apply {

511 my ($self, $form, $env, $cont, $fail) = @_;
512 $form->map_eval(

513 $env,

514 cont {

515 my ($evaluated_args, $fail) = Q@_;
516 my ($a, $b, $genv) = $evaluated_args->value;
517 $genv ||= new PScm::Env(Q);

518 $a->Unify($b, $qgenv, $cont, $fail);
519 1,

520 $fail

521);

522 }

523

524 1;

You can see that it uses map_eval() from Section 13.6.5 on page 206 to evaluate its argument $form,
passing it a continuation that breaks out the patterns $a and $b, and the optional environment $genv
from the evaluated arguments. Then it defaults $genv to a new, empty environment, and calls Unify ()
on $a passing it the other pattern, the query environment and the success and failure continuations.

Referring back to our test implementation of unify () in Section 17.3.1 on page 312 we can see that
the first thing that implementation does is to check if its first argument is a var, and if so call unify_var ()
on it. We can replace this explicit conditional with polymorphism by putting a Unify() method at an
appropriate place in the PScm::Expr hierarchy. But the PScm::Expr::Symbol class is not the best
place: not all symbols are pattern variables, only those starting with capital letters or underscores. So
here’s the trick. We create a new subclass of PScm::Expr::Symbol called PScm::Expr::Var and put
the method there. Read() can detect pattern variables on input and create instances of this new class
instead of PScm::Expr::Symbol. Since the new class inherits from PScm::Expr::Symbol, and we do
not override any of that class’s existing methods, these new PScm::Expr::Var objects behave exactly
like ordinary symbols to the rest of the PScheme implementation. Here’s the change to next_token()
from PScm::Read to make this happen.

066 sub _next_token {

067 my ($self) = @_;

068

069 while (!$self->{Line}) {

070 $self->{Line} = $self->{FileHandle}->getline();
071 return undef unless defined $self->{Line};

072 $self->{Line} =~ s/ \s+//s;

073 }

074

075 for ($self->{Line}) {

076 s/"\(\s*// && return PScm::Token: :0Open->new() ;
077 s/"\)\s*// && return PScm::Token: :Close—>new();

078 s/"\’\s*x// &% return PScm: :Token: :Quote->new();

17.3. UNIFICATION 319

079 s/°\,\sx// && return PScm::Token: :Unquote->new();
080 s/"\.\s*// && return PScm::Token: :Dot->new();
081 s/~ ([-+]17\d+)\sx//

082 && return PScm: :Expr::Number->new($1);

083 s/7"((2: (2 \\D) I ([""1))*)"\s*// && do {

084 my $string = $1;

085 $string =" s/\\//g;

086 return PScm::Expr::String->new($string);
087 +s

088 s/ (LA-Z_1["\s\(\)1*)\s*//

089 && return PScm: :Expr::Var->new($1);

090 s/7(["\s\(\)1+)\s*//

091 &% return PScm::Expr::Symbol->new($1);

092 }

093 die "can’t parse: $self->{Line}";

094 }

The only change is on Lines 88—-89 where if the token matched starts with a capital letter or underscore
then next_token() returns a new PScm::Expr::Var where otherwise it would have returned a PScm::
Expr::Symbol.

Now we have somewhere to hang the functionality equivalent to unify _var() from our test imple-
mentation, we can put it in a method called Unify () in PScm::Expr::Var:

378 sub Unify {

379 my ($self, $other, $genv, $cont, $fail) = @_;

380

381 if (defined(my $value = $genv->LookUpNoError($self))) {
382 $value->Unify($other, $qenv, $cont, $fail);

383 } elsif ($other->is_var &&

384 defined (my $other_value = $genv->LookUpNoError ($other))) {
385 $other_value->Unify($self, $qenv, $cont, $fail);
386 } elsif ($self->is_anon) {

387 $cont->Cont ($genv, $fail);

388 } else {

389 $genv->ExtendUnevaluated(

390 new PScm::Expr::List($self),

391 new PScm::Expr::List($other),

392 $cont,

393 $fail

394);

395 }

396 }

It’s identical to the earlier unify var() except that it makes use of method calls and is written in CPs.
The is_var () method is defined to be false at the root of the expression hierarchy in PScm::Expr, but
is overridden to be true in PScm::Expr::Var alone. Equivalently is_anon() is defined false in PScm::

320 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

W

Expr but defined to be true if the value of the var is “_” in PScm::Expr::Var®:

400 sub is_anon {

401 my ($self) = Q_;
402 $self->value eq ’_7;
403 }

The only other occurrence of Unify() is at the root of the hierarchy in PScm::Expr:

049 sub Unify {

050 my ($self, $other, $qgenv, $cont, $fail) = O_;

051 if ($other->is_var) {

052 $other->Unify($self, $qgenv, $cont, $fail);

053 } else {

054 $self->UnifyType($other, $qenv, $cont, $fail);
055 }

056 }

This really just takes care of the case where the first pattern is not a var but the second pattern is. If the

second pattern is a var it calls Unify () on it, passing $self as the argument, reversing the order in the

same way as our prototype unify() did. If the second pattern is not a var, then it calls a new method

UnifyType() on $self. UnifyType() is just another name for Unify() and allows a second crack at

polymorphism since it is implemented separately in a couple of places in the PScm::Expr hierarchy.
The first such place is in PScm::Expr itself.

058 sub UnifyType {

059 my ($self, $other, $qgenv, $cont, $fail) = @_;
060 if ($self->Eq($other)) {

061 $cont->Cont ($genv, $fail);

062 } else {

063 $fail->Fail();

064 }

065 }

This works for all atomic data types. If the two patterns are Eq() then succeed, otherwise fail. This
is the first place we’ve actually seen the failure continuation invoked. Note that the equality test Eq()
implicitly deals with type equivalence for us, so we don’t need the arrays() routines etc. from the
prototype. Now the only other place we need to put UnifyType () is in PScm::Expr::List::Pair

276 sub UnifyType {

277 my ($self, $other, $qgenv, $cont, $fail) = @_;
278 if ($other->is_pair) {

279 $self->[FIRST]->Unify(

280 $other->[FIRST],

281 $qenv,

®We could have further subclassed PScm::Expr::Var and had the reader recognize underscores as this type, but is_-
anon() is the only method that would then need to be specialized to this type.

17.3. UNIFICATION 321

282 cont {

283 my ($qenv, $fail) = @_;
284 $self->[REST]->Unify(
285 $other->[REST],
286 $qenv,

287 $cont,

288 $fail

289)

290 1,

201 $fail

292);

293 } else {

294 $fail->Fail();

295 }

296 }

This PScm: :Expr: :List: :Pair: :UnifyType() is in fact simpler in one sense than the unify_arrays()
from our test implementation. First it performs a simple check that the $other is a list. If not it calls the
failure continuation. Then, rather than walking both lists, it only needs to call Unify () on its first()
and rest (), passing the $other’s first () or rest () appropriately. Of course this is a little complicated
because it’s in CPS, but nonetheless that is all it has to do.

That’s all for unify itself. If you remember from the start of this section, we will also need a substitute
builtin to replace pattern variables with values in the environment. It is called like (substitute
(pattern) (env)) and returns the (pattern) suitably instantiated. We can make this a primitive rather
than a special form because it has no need of an environment (other than the one that is explicitly
passed) and no need to access the failure continuation (it always succeeds). Here’s PScm::Primitive::
Substitute:

216 package PScm::Primitive::Substitute;

217
218 use base qw(PScm::Primitive);
219
220 sub _apply {
221 my ($self, $body, $qgenv) = @_;
222 $body->Substitute ($genv->ResolveAll());
223
}

It does nothing much by itself, merely calling a ResolveAll() method on the argument environment
then passing the result to the $body’s Substitute() method. We’ll take a look at that new PScm::
Env: :ResolveAll() method first.

266 sub ResolveAll {
267 my ($self) = @_;
268 my %bindings;

322 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

269 foreach my $var ($self->Keys) {

270 $bindings{$var} = $self->Resolve(new PScm::Expr::Var($var));
271 }

272 return $self->new(%bindings);

273 }

This ResolveAll () loops over each key in the environment, calling a subsidary Resolve() method on
each and saving the result in a temporary %bindings hash. Then it creates and returns a new PScm::
Env with those bindings.

If you refer back to our resolve () function in the prototype, you can see that in the first stage, if the
$pattern is a variable, it repeatedly attempts to replace it with a value from the environment until either
it is not a variable anymore or it cannot find a value. This ResolveAll () is effectively pre-processing the
environment so that any subsequent lookup for a pattern variable will not need to perform that iteration.

Keys () just collects all the keys from the environment:

275 sub Keys {

276 my ($self, $seen) = O_;

277 $seen |I1= {};

278 foreach my $key (keys %{$self->{bindings}}) {
279 $seen->{$key} = 1;

280 }

281 if ($self->{parent}) {

282 $self->{parent}->Keys($seen) ;

283 }

284 return (keys %$seen);

285 }

and Resolve () does exactly what resolve() did in our test implementation: it repeatedly replaces the
variable with its value from the environment until the variable is not a variable any more, or cannot be
found. If it finds a non-variable value it calls its ResolveTerm() method on it, passing the env $self as
argument, and returning the result.

287 sub Resolve {

288 my ($self, $term) = O_;

289 while ($term->is_var) {

290 if (my $val = $self->LookUpNoError ($term)) {
291 $term = $val;

292 } else {

293 return $term;

294 }

295 }

206 return $term->ResolveTerm($self);

297 }

ResolveTerm() gives any compound term a chance to resolve any pattern variables it may contain.
There are two definitions of ResolveTerm(). The only compound terms in PScheme are lists, and
pattern variables themselves have already been resolved, so the default ResolveTerm() in PScm::Expr
just returns $self:

17.3. UNIFICATION 323

067 sub ResolveTerm {

068 my ($self, $qgenv) = @_;
069 return $self;
o070 }

The second definition of ResolveTerm() is, not surprisingly, in PScm::Expr::List::Pair:

298 sub ResolveTerm {

299 my ($self, $genv) = @_;

300 return $self->Cons($genv->Resolve($self->[FIRST]),
301 $qgenv->Resolve ($self->[REST]));
302 }

It walks itself, calling the argument $genv’s Resolve () method on each component, and returning a new
PScm::Expr::List of the results.

So we’re talking about how substitute works, and we saw that primitive’s _apply () method called
the argument $genv’s ResolveAll () method to return a new environment with any pattern variables in
the values replaced, where possible. Then _apply () passed that new environment to its argument $body’s
Substitute() method. We’ve just seen how ResolveAll() works, now we can look at Substitute()
itself.

Only pattern variables can be substituted, but lists need to examine themselves to see if they contain
any pattern variables. So a default Substitute() method in PScm::Expr takes care of all the things
that can’t be substituted, it just returns $self:

o072 sub Substitute {

073 my ($self, $qgenv) = @_;
074 return $self;
o075 }

The Substitute() in PScm::Expr::Var returns either its value from the environment or itself if it is
not in the environment:

405 sub Substitute {

406 my ($self, $qgenv) = @_;
407 return $qgenv->LookUpNoError ($self) || $self;
408 }

Finally, the Substitute() in PScm::Expr::List::Pair recursively calls Substitute() on each of its
components, constructing a new list of the results:

304 sub Substitute {

305 my ($self, $qgenv) = O_;

306 return $self->Cons($self->[FIRST]->Substitute($qenv),
307 $self->[REST]->Substitute($qgenv));
308 }

And that’s substitute. To sum up, it tries as hard as it can to replace all pattern variables in the form
with values from the environment, recursing not only into the form it is substituting, but also into the
values of the variables themselves.

324 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

There are a few more things we need to add to the interpreter before we can show off its new prowess.
Firstly we will have occasion to pass an empty environment into unify (indirectly), and for that we’ll
need a new-env primitive. This is as simple as it gets:

258 package PScm::Primitive::NewEnv;

259
260 use base qw(PScm::Primitive);
261

262 sub _apply {

263 new PScm::Env();

264 }

Another thing we’ll need goes back to a passing comment I made a while back. It can be a problem if
you try to unify two patterns that inadvertantly use the same pattern variable names. Sometimes you
want the variables to share a value, and sometimes you don’t. For this reason we need something that
will take a pattern and replace its variable names with new variable names that are guaranteed to be
unique. The same variable occurring more than once in the pattern should correspond to the same new
variable occurring more than once in the result, but we should be reasonably confident that the new
variable name won’t appear anywhere else in the program by accident.

This new PScheme function is called instantiate. It could be written in the PScheme language,
but that would require adding other less germane primitives for creating symbols etc. so all in all it is
probably better to build it in to the core. It can be a primitive, but it will need a bit more than just an
_apply () method:

267 package PScm::Primitive::Instantiate;
268
269 use base qw(PScm::Primitive);

270
271 sub new {

272 my ($class) = @_;

273 bless {

274 seen => {},

275 counter => 0,

276 }, $class;

217 }

278

279 sub _apply {

280 my ($self, $body) = @_;
281 $self->{seen} = {};

282 $body->Instantiate ($self);
283 }

284

285 sub Replace {

17.3. UNIFICATION 325

286 my ($self, $var) = Q_;

287 return $var if $var->is_anon;

288 unless (exists($self->{seen}{$var->value})) {
289 $self->{seen}{$var->value} =

290 new PScm::Expr::Var($self->{counter}++);
201 }

292 return $self->{seen}{$var->value};

203 }

294

295 1;

Remember that there is only one instance of any given primitive or special form in the PScheme environ-
ment, and that persists for the duration of the repl. So by giving this primitive its own new() method
we provide a convenient place to store a singleton counter that we can use to generate new symbols.
The seen field of the object however, which keeps track of which variables the instantiate function
has already encountered, must be re-initialized to an empty hash on each separate application of the
primitive. After (re-)initializing seen on Line 281, _apply () calls its argument $body’s Instantiate()
method passing $self as argument.

Obviously the only PScm::Expr type that will avail itself of the instantiate object is PScm::Expr::
Var, and that will make use of the callback method Replace () to find or generate a replacement variable.
Replace() then, first checks to see if the variable is the anonymous variable (Line 287). If so then it
just returns the variable, since the anonymous variable never shares and should never be replaced by
a variable that will share. Then unless it has already seen the variable it creates a new alias for it by
using the incrementing counter (Lines 288-291). This works well because the reader would never create
a PScm::Expr::Var from a number.

Just as with Unify () and Substitute(), a default method Instantiate() in PScm::Expr handles
most cases and just returns $self:

o079 sub Instantiate {

080 my ($self, $instantiator) = @_;
081 return $self;
082 }

The PScm::Expr::Var version of instantiate calls the $instantiator’s Replace() callback to get a
new variable, passing $self as argument because Replace () needs to keep track of the variables it has
seen already:

412 sub Instantiate {

413 my ($self, $instantiator) = @_;
414 return $instantiator->Replace($self);
a5 }

Finally PScm: :Expr::List: :Pair::Instantiate() recurses on both its first() and rest() compo-
nents, calling Instantiate() on both and constructing a new list on the way back out:

316 sub Instantiate {
317 my ($self, $instantiator) = @_;

326 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

318 return $self->Cons($self->[FIRST]->Instantiate($instantiator),
319 $self->[REST]->Instantiate($instantiator));
320 }

[

The last thing we’re going to need, for pragmatic reasons, is a way to check the type of various expressions
from within the PScheme language. A proper scheme implementation has a full set of such type checking
functions, but we’re only going to need pair?, number? and var? (note the question marks.) They are
all primitives, and in fact have so much in common that we will create an abstract parent class called
PScm::Primitive:: TypeCheck and put a shared _apply() method in there:

226 package PScm::Primitive::TypeCheck;
227
228 use base qw(PScm::Primitive);

229

230 sub _apply {

231 my ($self, $body) = @_;

232 if ($self->test($body)) {

233 return new PScm: :Expr: :Number(1);
234 } else {

235 return new PScm: :Expr: :Number(0);
236 }

237 }

You can see that it calls a test() method which we must subclass for each test, then it returns an
appropriate true or false value depending on the test. Here’s the test for pair? in PScm::Primitive::
TypeCheck::Pair:

240 package PScm::Primitive::TypeCheck: :Pair;
241 use base qw(PScm::Primitive::TypeCheck) ;
242

243 sub test { $_[1]->is_pair }

We’ve already seen that is_pair() is defined false in PScm::Expr and overridden to be true in PScm::
Expr::List::Pair alone. The equivalent number? and var? PScheme functions are bound to PScm::
Primitive:: TypeCheck::Number and PScm::Primitive:: TypeCheck::Var, and make use of equiv-
alent is_number () and is_var () methods in PScm::Expr.

We have now implemented the four components we need to get on with defining a logic programming
language: unify, substitute, new-env and instantiate. Along with those we have also added the
three type tests pair?, var? and number? which just check if their argument is of that type. They are
all wired in to the repl in the normal way, here’s the additions:

17.3. UNIFICATION

036 sub ReadEvalPrint {

037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081

my ($infh, $outfh) = @_

b

$outth ||= new FileHandle(">-");

my $reader =
my $initial_env;

instantiate =>

new PScm:

new PScm::Read($infh);

:Primitive:

$initial_env = new PScm: :Env(
let => new PScm::SpecialForm::Let(),
2% => new PScm::Primitive::Multiply(),
10 => new PScm::Primitive::Subtract(),
140 => new PScm::Primitive::Add(),
if => new PScm: :SpecialForm::If(),
lambda => new PScm::SpecialForm: :Lambda(),
list => new PScm::Primitive::List(),
car => new PScm::Primitive::Car(),
cdr => new PScm::Primitive::Cdr(),
cons => new PScm::Primitive::Cons(),
letrec => new PScm: :SpecialForm: :LetRec(),
’letx’ => new PScm::SpecialForm::LetStar(),
eval => new PScm: :SpecialForm: :Eval(),
macro => new PScm::SpecialForm::Macro(),
quote => new PScm::SpecialForm: :Quote(),
’set!’ => new PScm::SpecialForm::Set(),
begin => new PScm::SpecialForm: :Begin(),
define => new PScm::SpecialForm: :Define(),
’make-class’ => new PScm::SpecialForm::MakeClass(),
’call/cc’ => new PScm: :SpecialForm::CallCC(),
print => new PScm: :SpecialForm: :Print($outfh),
Spawn => new PScm: :SpecialForm: :Spawn(),
exit => new PScm::SpecialForm: :Exit(),
error => new PScm: :SpecialForm: :Error(
$outfh,
bounce { repl($initial_env, $reader, $outfh) }
),
amb => new PScm::SpecialForm::Amb(),
’eq?’ => new PScm::Primitive::Eq(),
)50 => new PScm::Primitive::Gt(),
10 => new PScm::Primitive::Lt(),
1>=7 => new PScm::Primitive::Ge(),
rg=? => new PScm::Primitive::Le(),
and => new PScm::SpecialForm::And(),
or => new PScm: :SpecialForm::0r(),
unify => new PScm::SpecialForm: :Unify(),
substitute => new PScm::Primitive::Substitute(),
‘new-env’ => new PScm::Primitive::NewEnv(),

:Instantiate (),

328 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

082 Ypair?’? => new PScm::Primitive::TypeCheck::Pair(),
083 ‘var?’ => new PScm::Primitive::TypeCheck::Var(),

084 ’number?’ => new PScm::Primitive::TypeCheck: :Number(),
085);

086

087 $initial_env->Define(

088 PScm: :Expr: :Symbol->new("root"),

089 PScm::Class: :Root->new($initial_env)

090);

091 __PACKAGE__->new_thread(bounce { repl($initial_env, $reader, $outfh) });
092 trampoline();

093 }

17.4 Logic Programming

You may want to refer back to Section 17.1 on page 299 at the start of this chapter where we saw some
examples of logic propgramming in action. However in order to explain how this all works, let’s move
away from our first examples and consider instead a very simple logic problem:

Socrates

e All men are mortal.
e Socrates is a man.

e Is socrates mortal?

While a mortal man should have no difficulty answering “yes” to the above puzzle, SQL queries might
have some difficulty.
Here’s a formulation of the rules in our system:

(define the-rules
2 (
((mortal X) (man X))
((man socrates))

))

The first rule on the list should be read as (mortal X) if (man X) that is, “X is mortal if X is a man,”
or colloquially “all men are mortal”.

The second rule is just the bare fact “Socrates is a man.”

In response to a query (mortal socrates) the system will respond in the affirmative. In response
to a query like (mortal aristotle) you will just get Error: no more solutions.

You already know what unification does, so you should be able to start to see what is happening here.
The system is given the query ((mortal socrates)) so it scans through the-rules looking only at the
head of each rule, trying to unify it with the first term in the query, (mortal socrates). It succeeds
in unifying it with (mortal X). The result of that unification is an environment where X is bound to
socrates. In the context of that environment, it descends into the body of the rule, attempting to prove
each component of the body just as if it had been entered as a direct query, but with the variable parts

17.4. LOGIC PROGRAMMING 329

substituted for their values. In this case that means trying to find a rule that matches (man X) where
X=socrates. This succeeds matching the fact (man socrates) and so the entire query succeeds.

What about asking “Who is mortal?”

In response to the query (mortal X) the head of each rule is again scanned. But I haven’t told you
the full story at this point.

If you remember from Section 17.3.2 on page 316 we said there might be problems trying to unify
two patterns which happened to contain the same variable names, and for that reason we implemented
instantiate to replace the variables in a pattern with others that were equivalent, but guaranteed to
be unique. In fact when the database of rules is scanned, instantiate is called on each rule before the
unification with the head is attempted. This has no effect on our first example query (mortal socrates)
but it does make a difference for (mortal X), because the X appears in both the query and the rule.
Thanks to instantiate, (mortal X) unifies with the head of a rule that looks like ((mortal (0)) (man
(0)).

So the variable X unifies with the variable (0) rather than itself, and it is in this environment that
the body of the rule (man (0)) is investigated.

The statement (man (0)) succeeds in unifying with (man socrates), and in the process (0) is bound
to socrates. Now the entire rule has succeeded and the query succeeds, resulting in an environment
where X=(0) and (0)=socrates. substitute is given the form (mortal X) and that environment, and
produces the result (mortal socrates).

So let’s see how to build this system from our “toolkit” of unify, substitute, instantiate, and
new-env. Before diving into the code, here is a slightly more formal definition of what we shall be doing.

e Start with an empty environment.
e For each term in a query of the form ({term;) ... (term,))

— For each rule

* Instantiate a copy of the rule
* If the term unifies with the head of the copied rule

- Recurse on the body of the instantiated rule as another query, with the environment
augmented by variables that were instantiated by unifying the term with the head.

- Augment the environment with variables that were instantiated by solving the term.
* Else
- Fail (backtrack.)

— Fail (backtrack.)

So you can see that the body of a rule is treated exactly the same as a top-level query, except that the
current environment may contain variables that were instantiated by prior unifications. Therefore our
implementation can recurse on the body of a rule, re-using the code that we shall write to process a top-
level query. You should also be aware that the environment always accumulates on its way downstream
to a solution, only backtracking causes bindings in the accumulating environment to be discarded on the
way back upstream.

This is the first time we have really used the PScheme language to implement any serious piece of
functionality. I've chosen to do it this way for two reasons. Firstly it emphasises a nice abstraction barrier

330 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

between our “toolkit” of primitive Perl operations and the PScheme “glue” that binds them into a logic
programming system; secondly and perhaps more importantly, it’s actually easier to do in PScheme than
it would have been in Perl, which I'm honestly quite pleased about. Having said all that, the code may
take a little more study if you're not used to reading Scheme programs yet, but it is blissfully short and
sweet.

The top-level function, as you have seen from examples above, is called prove, and here’s its definition:

(define prove
(lambda (goals)
(substitute goals
(match-goals goals
(new-env)))))

prove is given a list of goals (statements to be proved.) It calls another function match-goals passing

both the goals and a new empty environment. If match-goals succeeds, it will return an environment

with appropriate variables bound, and prove passes that environment along with the original goals

to substitute, which replaces variables in the goals with their values then returns the result. If

match-goals fails, control will backtrack through prove and we will see Error: no more solutions.
Here’s match-goals:

(define match-goals
(lambda (goals env)
(if goals
(match-goals (cdr goals)
(match-goal (car goals)
env))

env)))

match-goals walks its list of goals, calling another function match-goal on each, and collecting the
resulting extended environment. If there are no goals left to prove, then match-goal succeeds and
returns the environment it was passed. Incidentally this means that prove with an empty list of goals
will always succeed and return its argument environment unchanged.

Here’s match-goal:

(define match-goal
(lambda (goal env)
(match-goal-to-rule goal
(one-of the-rules)

env)))

Here is where we start to see amb coming in to play. match-goal uses the one-of function that we
defined in Section 16.1 on page 249 to pick one of the list of rules to try to match against the goal. It
passes the goal, the chosen rule, and the environment to match-goal-to-rule, which does the actual
unification and recursion.

Here’s match-goal-to-rule:

17.4. LOGIC PROGRAMMING 331

(define match-goal-to-rule
(lambda (goal rule env)
(let* ((instantiated-rule (instantiate rule))

(head (car instantiated-rule))

(body (cdr instantiated-rule))

(extended-env (unify (substitute goal env)
head
env)))

(match-goals body extended-env))))

It uses let* to first create an instantiated copy of the rule, and then extract the head and the body from
the instantiated-rule. Then it calls unify on the (substituted) goal and the head of the instantiated
rule. If unify succeeds, then the result is an extended environment that match-goal-to-rule uses to
recursively call match-goals on the body of the rule. This is the point of recursion discussed above
where the body of a rule is treated as a new query.

That’s all there is to it! Of course what is implicit in the above code is the backtracking that
both unify and amb provoke if a unification fails or the list of rules to try is exhausted. This is most
apparent in match-goal-to-rule above: if unify fails, then control simply backtracks out of the func-
tion at that point. Likewise in match-goal, when one-of runs out of options, control backtracks and
match-goal-to-rule is never called.

There are a couple of refinements we can make howver. We would like to support require and is from
our examples at the start of the chapterS.

Additionally, it would be useful if we could check that the result returned by prove does not contain
any unresolved variables. If it does, this should be considered a failure. For that reason we make use of
those two type checking functions pair? and var? to write a little recursive test called no-vars?:

(define no-vars?
(lambda (expr)
(if (pair? expr)
(and (no-vars? (car expr))
(no-vars? (cdr expr)))
(not (var? expr)))))

We can use that to write a variant of substitite called substitute-all that first of all performs the
substitution then requires that the result contains no vars:

(define substitute-all
(lambda (expr env)
(let ((subst-expr (substitute expr env)))
(begin
(require (no-vars? subst-expr))
subst-expr))))

b (requre (expression)) fails if (expression) is false, and ((expr;) is (empry)) fails if (ezpr;) does not equal (exprs),
in both cases after variable substitution and evaluation.

332 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

If the require succeeds, then substitute-all returns the substituted expression just as substitute
does. Otherwise substitute-all backtracks. We can use this instead of substitute in the top-level
prove function:

(define prove
(lambda (goals)
(substitute-all goals
(match-goals goals
(new-env)))))

We will find other uses for substitute-all.

Next up, remember I said that the system treated (require (ezpr)) and ((var) is (ezpr)) spe-
cially. This is not difficult to achieve. The existing match-goal just calls match-goal-to-rule with the
current goal, one-of the rules, and the current env. All we need to do is to extend this to first look out
for require and is.

(define match-goal
(lambda (goal env)
(if (eq? (car (cdr goal)) ’is)

(match-is goal env)

(if (eq? (car goal) ’require)
(match-require goal env)
(match-goal-to-rule goal

(one-of the-rules)

env)))))

I've added two new functions match-is and match-require to actually deal with those special rules.
neither of them are particularily complex. match-is extracts the var and the expression from the rule,
then it calls substitute-all on the expression. It will therefore fail and backtrack if the expression
contains variables that have not been bound. This makes sense because the next thing it does is to pass
the expression to eval (defined in Section 9.2.3 on page 117) and it makes no sense for eval to operate
on an expression which contains instantiated pattern variables ((0), (1) etc.) that cannot possibly have
values in the normal pscheme environment. If it gets that far, then match-is finally unifies the var term
with the substituted and evaluated expression, returning the new environment:

(define match-is
(lambda (goal env)
(let* ((var (car goal))
(value (car (cdr (cdr goal))))
(svalue (substitute-all value env)))
(unify var (eval svalue) env))))

Note particularily that “is” is not necessarilty a test, it is a unification that will fail if the left hand

expression cannot be unified with the right, so it can be considered both an assertion and potentially an
assignment. To be clear match-is allows us to deal with statements like:

17.5. MORE LOGIC PROGRAMMING EXAMPLES 333

(N is (+ X Y))

provided X and Y are bound. In this example either N must already have a numeric value equal to the
sum of X and Y, or it must be unbound, in which case it will recieve that value.
match-require is quite similar to match-is.

(define match-require
(lambda (goal env)
(let ((sgoal (substitute-all goal env)))
(begin
(eval sgoal)
env))))

It too calls substitute-all, this time on the entire expression, for the same reasons match-is did.
Then it passes the whole expression to eval. If the require in the substituted goal fails, control will
backtrack from that point as usual.

That concludes our implementation. Let’s try it out!

17.5 More Logic Programming Examples

In this section we look at applying logic programming to some “real world” problems, beginning with
parsing.

17.5.1 Parsing (again)

We saw in Section 16.2.4 on page 260 that amb by itself was very useful for parsing because of its built
in backtracking capability. However combining amb with unification as we have done here makes parsing
an extraordinarily simple task, at least if we are prepared to accept the accompanying inefficiencies.

Consider the following rules for parsing a set of sentences worked through in the tests from Chapter 16
on page 249, Listing 16.7.3 on page 290. This is a different set of sentences to those worked through in
Section 16.2.4 on page 260, the sentences in question are:

e “John will put his car in the garage.”
e “Paul put a car in his garage.”

e “Paul has put a very very old car in his quite new red garage.”

These are obviously more complex than the sentences we worked through with amb, but we can deal with
them easily enough here:

(define the-rules
(list
> ((proper-noun (john)))
> ((proper-noun (paul)))
> ((noun (car)))
> ((noun (garage)))
> ((auxilliary (will)))

334 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

’((auxilliary (has)))
>((verb (put)))
>((article (the)))

> ((article (a)))
>((article (his)))

> ((preposition (in)))
> ((preposition (to0)))
> ((preposition (with)))
> ((degree (very)))

> ((degree (quite)))
’((adjective (red)))
’((adjective (green)))
’((adjective (o0ld)))
’((adjective (new)))

>((append) Y Y))
>((append (A . X) Y (A . Z)) (append X Y Z))

> ((sentence 8)
(append NP VP S)
(noun-phrase NP) (verb-phrase VP))
> ((sentence S)
(append _X VP S) (append NP AUX _X)
(noun-phrase NP) (auxilliary AUX) (verb-phrase VP))

> ((noun-phrase NP)

(append ART ADJP NP)

(article ART) (adj-phrase ADJP))
> ((noun-phrase NP) (proper-noun NP))

> ((adj-phrase ADJP) (noun ADJP))
> ((adj-phrase ADJP)
(append DGP ADJP2 ADJP)
(degree-phrase DGP) (adj-phrase ADJP2))

> ((degree-phrase DGP) (adjective DGP))
> ((deg-phrase DGP)

(append DEG DGP2 DGP)

(degree DEG) (deg-phrase DGP2))

> ((verb-phrase VP)
(append _X PP VP) (append VB NP _X)
(verb VB) (noun-phrase NP) (prep-phrase PP))

> ((prep-phrase PP)
(append PR NP PP)

17.5. MORE LOGIC PROGRAMMING EXAMPLES 335

(preposition PR) (noun-phrase NP))))

This is little more than a declaration of the rules of the grammar. Let’s look at a few of those rules a
little more closely.

> ((adj-phrase ADJP) (noun ADJP))
> ((adj-phrase ADJP)
(append DGP ADJP2 ADJP)
(degree-phrase DGP) (adj-phrase ADJP2))

This rule about adjectival phrases is in two parts. The first part says that ADJP is an adj-phrase if ADJP
is a noun. The second part says ADJP is an adj-phrase if some DGP and ADJP2 append to form ADJP,
and DGP is a degree-phrase, and ADJP2 is an adj-phrase.

’>((noun (car)))
> ((noun (garage)))

This pair of rules defines the nouns we know about. They say (car) is a noun and (garage) is a noun.
The nouns themselves are in lists because the system deals with lists: consider the adj-phrase rules
above, where ADJP must be a list for append to work on it.

Given the above, we can ask the obvious question:

> (prove ’((sentence (john put his car in the garage))))
((sentence (john put his car in the garage)))

You get the desired response, eventually”. Interestingly, you can also ask it “what is a sentence”:

> (prove ’((sentence S)))

((sentence (john put john in the car)))

> 7

((sentence (john put john in the garage)))

> 7

((sentence (john put john in the red car)))

> 7

((sentence (john put john in the red garage)))

> 7

((sentence (john put john in the red red car)))

> 7

((sentence (john put john in the red red garage)))
> 7

((sentence (john put john in the red red red car)))

It gets stuck in a recursive rut after a while, but it’s exciting to see that it has the potential to generate
all sentences of a grammar if it could avoid those traps®. However that’s not the real problem, the real

7it took over ten seconds on my computer.
80ne way to avoid recursive traps would be to randomize the order in which one-of returns its values. Unfortunately
that will cause other problems in general.

336 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

problem is that it is horribly inefficient. All of those calls to append, most of which produce useless
results, consume huge amounts of resources.

However we can take a hint from the way that we implemented parsing with amb in Section 16.2.4
on page 260. In that implementation, the routine parse-word removed tokens from the front of the
xunparsedx* global, effectively “directing” the progress of the parse, since it exposed the next token and
only certain words would match that newly exposed token. We can’t use “global variables” in a logic
programming system—the concept has no meaning—but we can nonetheless keep track of what has been
parsed so far.

We can do this by making all of our grammar rules take a second argument. For example:

(noun-phrase S R)

Will succeed if there is a noun phrase at the start of S, and if R is the remainder of S after removing that
noun phrase. Perhaps this approach is most easily demonstrated for individual words. Here’s the new
definition of noun:

>((noun (car . S) S))
>((noun (garage . S) S))

It will match if its first argument is a list starting with car or garage, an in the process instantiate its
second argument to the remainder of the list. For example:

> (prove ’((noun (garage is red) X)))
((noun (garage is red) (is red)))

If we write the other rules for single words similarily, we can start to build up more complex rules on
top:

> ((noun-phrase S X)
(article S S1) (adj-phrase S1 X))

This says that there is a noun phrase at the start of S, leaving X remaining if there is an article at the
start of S leaving S1 remaining, and an adjectival phrase at the start of S1, leaving X remaining. Note
that we no longer need to use append to “generate and test”. We can further build on these intermediate
rules just as with the previous grammar:

> ((sentence S X)
(noun-phrase S S1) (verb-phrase S1 X))

In order to use this new parser, we must remember to pass an empty list as the second argument to
sentence, to ensure that all of the tokens in the first argument are consumed:

> (prove ’((sentence (john put his car in the garage) ())))
((sentence (john put his car in the garage) ()))

Putting all of this together, we can see the considerably faster (but uglier) version in the test at the end
of Listing 17.8.2 on page 342.

Ugliness is not just an aesthetic thing, it gets in the way of clear and readable code. For that
reason any full Prolog implementation provides rewriting rules that will accept a simple grammar with
statements like”:

9When I say “like”, I’'m not suggesting that Prolog looks exactly like this, it’s actual syntax is somewhat different. I'm
only saying these are conceptually alike.

17.5. MORE LOGIC PROGRAMMING EXAMPLES 337

(sentence --> noun-phrase verb-phrase)
It will transform them into the internal form:
((sentence X0 X1) (noun-phrase X0 X2) (verb-phrase X2 X1))

as it reads them in. I'm not going to do that, since it would require generating symbols etc. but it should
be obvious that this sort of transformation is not difficult.

17.5.2 Simplifying Algebraic Expressions

If you remember back in Section 17.1.5 on page 304 The result of differentiating the expression (((x =~ 2)
+x) + 1) was (((2 * (x ~ 1)) + 1) + 0). While correct, this is somewhat unwieldy as it contains
redundant operations such as the addition of zero. It is relatively easy to write a set of rules that can
automatically simplify such expressions, however we have to be careful of the order in which we specify
the rules. This is not only a feature of our implementation, the order of the rules, which is the order in
which they will be searched, is significant in Prolog too.

We start off by saying that we cannot simplify anything unless it has some internal structure:

’((simplify E E) (require (not (pair? ’E))))

So if E is not a pair, then it will simplify to itself.
We next get to the main driver rule for simplification:

> ((simplify (X OP Y) E)
(simplify X X1)
(simplify Y Y1)

(s (X1 OP Y1) E))

This says that we can simplify an expression of the form (X 0P Y) to E if
1. we can simplify X to X1;
2. we can simplify Y to Y1;

3. we can simplify (X1 OP Y1) to E using the auxilliary simplification rules (s ((E1) (OP) (EZ2))
(E3)).

These auxilliary simplification rules occupy the rest of the definition of simplification. Firstly here are
the rules for addition:

*((s (X +0) X))

’((s (0 + X) X))

(s X +Y) Z)
(require (and (number? ’X) (number? ’Y)))
(Z is (+ X V)))

(s X +Y) X +Y)))

The first rule says that X plus zero is just X. The second rule is a necessary repetition of the first, reversing
0 and X. The third rule says that we can simplify (X + Y) to Z if X and Y are both numbers, by making
Z equal to their sum. The last rule is there in case the term can not be simplified, in which case the
result is just the original.

The rules for simplifying multiplication are very similar, except that we can simplify both multipli-
cation by zero and multiplication by one:

338 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

*((s (X *x 0) 0))
>((s (0 * X) 0))
(s X x 1) X))
7((s (1 *x X) X))

(s X *xY) Z)
(require (and (number? ’X) (number? ’Y)))
(Z is (x X Y)))

(s X *Y) (X *xY)))

[12 30

Likewise for exponentiation, except that we don’t have a operator in PScheme so we can’t perform

any actual numeric computation in this case:

(s (X 7 0) 1))
(s X~ 1) X))
(s X7 Y) X7 Y)))))

With these rules in place we can ask the system to simplify that unwieldy expression we saw before:

> (prove ’((simplify (((2 * (x =~ 1)) + 1) + 0) X)))
((simplify (((2 * (x =~ 1)) + 1) + 0) ((2 * x) + 1)))

Note that these rules for simplification are very incomplete, most noticeably they do not deal with
subtraction or division. However they are sufficient to demonstrate that they work and you can add the
extra rules yourself if you want to extend or experiment (this example is part of the tests in Listing 17.8.2
on page 342.)

17.6 Summary, Shortcomings and Short-cuts

While we’ve spent some time exploring the potential of logic programming, it would be wrong of me to
suggest that PScheme offers anything like the power of a real Prolog system. In fact it is missing some
fairly fundamental features, and differs from real Prolog quite significantly. If you're excited by what
you've seen here I'd suggest you get acquainted with a real Prolog system: I've barely scratched the
surface. You may be surprised to know that Prolog itself is commonly used to build compilers for even
higher-level languages and, much like Scheme, it is relatively easy to define a meta-circular evaluator for
Prolog in Prolog. I'm not going to go anywhere near that, this is getting silly enough as it is. Rather,
In this section I'd like to discuss the shortcomings of this implementation by comparing it with a real
Prolog.

17.6.1 Functors and Arity

In Prolog, facts and rules are not defined as simple lists. Prolog distinguishes between the functor of a
rule and its arguments. For example the PScheme “fact”:

((mary likes cheese))

would be written in Prolog as:

17.6. SUMMARY, SHORTCOMINGS AND SHORT-CUTS 339

likes(mary, cheese).

and the rule:

((likes mary X) (person X) (X likes chips))
would be written as:

likes(mary, X) :- person(X), likes(X, chips).

In this example likes is called the functor of the rule. Because it takes two arguments, it is said to
have an arity of 2, and is classified as 1ikes/2. This is distinct from any likes functor with a different
number of arguments, Just as in our implementation lists of different length cannot match.

The big advantage in distinguishing functor/arity like this is that Prolog can index its database on
this basis. Unification is expensive, so when searching for a rule to match i.e. likes(mary, X) Prolog
need only inspect rules that are likes/2.

Of course this means that the functor cannot be matched by a pattern variable. The expression:

X(mary, wine)

is not valid Prolog. However Prolog has mechanisms to extract the functor from a term as a variable,
and to call an expression constructed with a variable functor, so this apparent limitation can be worked
around.

Prolog also recognises operators and operator precedence, such that the normal mathematical opera-
tors are infix and are parsed with the correct precedence and associativity. Prolog operators are functors,
so for example the form:

a+bx*xc
is equivalent to:
+(a, *(b, c))

Prolog also allows you to define new operators as any sequence of non-alphanumeric characters, and
assign them a precedence and associativity. These user defined operators don’t actually do anything:
they just make it easier to write Prolog terms as they translate internally to normal functors just as the
built-in operators do.

17.6.2 The Cut

Another reason that Prolog distinguishes its functors is to allow short circuiting of the search space.
Prolog provides a special rule called the cut to accomplish this [3, pp69-92]. The cut is written with
a single exclaimation mark “!”. As part of the body of a rule, the cut always succeeds. But if it is
backtracked through, it backtracks all the way past the point where the head of the rule was unified, and
past the point where rules of that functor/arity were considered, back to the decision point before that.
This is extremely useful behaviour.

For example, returning to our simplify example of algebraic simplification from Section 17.5.2 on

page 337, our very first rule was:

340 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

> ((simplify E E) (require (not (pair? ’E))))

This was saying that you can simplify E to E if E is not a pair (is atomic.) We might translate this into
Prolog as:

simplify(E, E) :- atomic(E).
However this is better expressed in Prolog as:
simplify(E, E) :- atomic(E), !.

This says that if this rule succeeds, then no other simplify/2 rules should be considered if backtracking
occurs through the cut. If the expression E is atomic, then it cannot be simplified, end of story.

There are other uses of the cut, but they are best described in a book on Prolog.

In order to properly implement the cut, we would have to pass a third cut{} continuation around,
which makes the Parameter Object pattern discussed in Section 16.5.1 on page 285 even more attractive.

17.6.3 Backtracking Efficiency

As I've already mentioned in Section 16.5 on page 285, the chronological backtracking exhibited by amb
is hopelessly inefficient, and an alternative dependancy-directed backtracking is preferable. This kind of
backtracking examines the cause of any failure, and backtracks immediately to the point of execution
that most recently affected the failure. Dependancy directed backtracking is often implemented by a
constraint network, which allows the backtracking to proceed directly to the last place that the value in
question was altered. Again this is beyond the scope of this book!C.

17.7 Tests

The first set of tests in Listing 17.8.1 on the next page exercise the individual additions to this version
of the interpreter.

The first test proves that unify elicits backtracking on failure.

The second test proves that unify returns a PScm::Env on success.

the third test demonstrates that unify plus substitute can resolve the variable terms in an example
that we’ve seen before.

The last test in this file shows instantiate in action. Although the digits in the result look like
numbers, they are actually PScm::Expr::Vars
The second set of tests in Listing 17.8.2 on page 342 tries out our logic programming system. It works
through pretty much the examples we’ve already covered in this chapter.

105 ¢. I don’t know how to make it work yet.

17.8. LISTINGS 341

17.8 Listings

17.8.1 t/PScm Unify.t

001 use strict;

002 use warnings;

003 use Test::More;

004 use 1ib ’./t/1lib’;

005 use PScm::Test tests => 5;

006

007 BEGIN { use_ok(’PScm’) }

008

009 eval ok(<<’EQT’, <<’EOR’, ’simple unify’);
010 (unify ’(a b c) ’(a b d))

o11 EOT

012 Error: no more solutions

013 EOR

014

015 eval ok (<<’EQT’, <<’EOR’, ’simple unify 27’);
016 (unify ’(a b c) ’(a b ¢))

o17 EQOT

018 PScm: :Env

o019 EOR

020

021 eval ok(<<’EQT’, <<’EOR’, ’unify and substitute’);
022 (substitute

023 >((a A) (b B))

024 (unify ’(£f (g A) A)
025 ’(f B abc)))
026 EOT

027 ((a abc) (b (g abc)))
028 EOR

029

030 eval_ok(<<’EQT’, <<’EOR’, ’instantiate’);
031 (instantiate ’((f (g A) A) (f B abc)))
032 EOT

033 ((f (g 0) 0) (f 1 abc))

034 EOR

035

036 # vim: ft=perl

342

CHAPTER 17

17.8.2 t/AMB_ Unify.t

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

use strict;

warnings;

Test: :More;

lib ’./t/1lib’;

PScm: :Test tests => 13;

use
use
use
use

BEGIN { use_ok(’PScm’) }

my $prereqs = <<EOT;
(define not
(lambda (%)
(if x 0 1)))

(define require
(lambda (x)
(if x x (amb))))

(define one-of
(lambda (1st)
(begin
(require 1st)
(amb (car 1lst) (one-of (cdr 1st))))))

(define no-vars?
(lambda (expr)
(if (pair? expr)
(and (no-vars? (car expr))
(no-vars? (cdr expr)))
(not (var? expr)))))

(define substitute-all
(lambda (expr env)
(let ((subst-expr (substitute expr env)))
(begin
(require (no-vars? subst-expr))
subst-expr))))

(define prove
(lambda (goals)
(substitute-all goals
(match-goals goals
(new-env)))))

(define match-goals
(lambda (goals env)
(if goals
(match-goals (cdr goals)
(match-goal (car goals)
env))

env)))

UNIFICATION AND LOGIC PROGRAMMING

17.8. LISTINGS

052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103

(define match-goal
(lambda (goal env)
(if (eq? (car (cdr goal)) ’is)

(match-is goal env)

(if (eq? (car goal) ’require)
(match-require goal env)
(match-goal-to-rule goal

(one-of the-rules)

env)))))

(define match-is
(lambda (goal env)
(let* ((var (car goal))
(value (car (cdr (cdr goal))))
(svalue (substitute-all value env)))
(unify var (eval svalue) env))))

(define match-require
(lambda (goal env)
(let ((sgoal (substitute-all goal env)))
(begin
(eval sgoal)
env))))

(define match-goal-to-rule
(lambda (goal rule env)
(let* ((instantiated-rule (instantiate rule))
(head (car instantiated-rule))
(body (cdr instantiated-rule))
(extended-env (unify (substitute goal env)
head
env)))
(match-goals body extended-env))))

EOT

my $prereqs_output = <<EQOT;

not

require

one-of

no-vars?

substitute-all

prove

match-goals

match-goal

match-is

match-require

match-goal-to-rule
EOT

$preregs_output =~ s/\n$//s;

343

344 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

104

105 eval_ok (<<EOT, <<EOR, ’socrates’);
106 $prereqs

107 (define the-rules

108 (1ist ’((man socrates))

109 ’((mortal X) (man X))))
110 (prove ’((mortal socrates)))
111 EOT

112 $prereqgs_output

113 the-rules

114 ((mortal socrates))

115 EOR

116

117 my $rules = <<’EQT’;

118 (define the-rules

119 (list ’((mary likes cheese))

120 > ((mary likes wine))

121 >((john likes beer))

122 >((john likes wine))

123 >((john likes chips))

124 > ((person mary))

125 > ((person john))

126 > ((mary likes X) (person X)

127 (require (not (eq? ’X ’mary)))
128 (X likes Y)

129 (mary likes Y))))
130 EOT

131

132 eval ok(<<EQT, <<EOR, ’mary and john [1]’);
133 $prereqgs

134 $rules

135 (prove ’((mary likes john)))
136 EOT

137 $prereqgs_output

138 the-rules

139 ((mary likes john))

140 EOR

141

142 eval_ok(<<EQT, <<EOR, ’mary and john [2]°’);
143 $prereqgs

144 $rules

145 (prove ’((mary likes X)))
146 7

147 7

148 7

149 EOT

150 $prereqgs_output

151 the-rules

152 ((mary likes cheese))

163 ((mary likes wine))

1564 ((mary likes john))

155 Error: no more solutions

17.8. LISTINGS 345

156 EOR

157

158 $rules = <<’EQ0T’;

159 (define the-rules

160 (list ’((append O Y Y))

161 >((append (A . X) Y (A . Z)) (append X Y Z))))
162 EOT

163

164 eval_ok(<<EQT, <<EOR, ’append [1]7’);

165 $prereqs

166 $rules

167 (prove ’((append (a b) (c d) X)))

168 EOT

169 $prereqgs_output

170 the-rules

171 ((append (a b) (c d) (a b c d)))

172 EOR

173

174 eval_ok(<<EQT, <<EOR, ’append [2]’);

175 $prereqs

176 $rules

177 (prove ’((append X Y (a b ¢ d4))))

178
179
180
181
182
183 EOT

184 $prereqs_output

185 the-rules

186 ((append () (abc d) (abc d)))

187 ((append (a) (b c d) (a b c d)))

188 ((append (a b) (c d) (a b c d)))

189 ((append (a b c¢) (d) (a b c d)))

190 ((append (a b c d)) (ab c d)))

191 Error: no more solutions

192 EOR

193

194 eval ok(<<EOT, <<EOR, ’symbolic differentiation’);
195 $prereqgs

196 (define the-rules

197 (list ’((derivative X X 1))

N N N N N

198 >((derivative N X 0) (require (number? °’N)))

199 >((derivative (X " N) X (N * (X ~ P))) (P is (- N 1)))
200 ’((derivative (log X) X (1 / X)))

201 >((derivative (F + G) X (DF + DG))

202 (derivative F X DF)

203 (derivative G X DG))

204 >((derivative (F - G) X (DF - DG))

205 (derivative F X DF)

206 (derivative G X DG))

207 > ((derivative (F * G) X ((F * DG) + (G * DF)))

346 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

208 (derivative F X DF)

209 (derivative G X DG))

210 >((derivative (1 / F) X ((- DF) / (F * F)))

211 (derivative F X DF))

212 >((derivative (F / G) X (((G * DF) - (F * DG)) / (G * G)))
213 (derivative F X DF)

214 (derivative G X DG))))

215

216 (prove ’((derivative (((x ~ 2) + x) + 1) x X)))

217 EOT

218 $prereqs_output

219 the-rules

220 ((derivative (((x ~ 2) + x) + 1) x (((2 *x (x =~ 1)) + 1) + 0)))
221 EOR

222

223 $rules = <<EOF;

224 (define the-rules

225 (list ’((add X Y 2) (Z is (+ X Y)))

226 ’((add X Y Z) X is (- ZY)))
227 ’((add X Y Z) (Y is (- Z D))
228 EOF

229

230 eval_ok(<<EQOF, <<EOR, ’builtin arithmetic’);
231 $prereqgs

232 $rules

233 (prove ’((add 2 3 X)))

234 (prove ’((add 2 X 5)))

235 (prove ’((add X 3 5)))

236 EOF

237 $prereqs_output

238 the-rules

239 ((add 2 3 5))

240 ((add 2 3 5))

241 ((add 2 3 5))

242 EOR

243

244 $rules = <<EOF;

245 (define the-rules

246 (list ’(((johann ambrosius) father-of (j s)))

247 ’(((j c friedrich) father-of (w f ernst)))

248 >(((j s) (anna magdalena) parents-of (j ¢ friedrich)))
249 >(((j s) (anna magdalena) parents-of (johann christian)))
250 >(((j s) (maria barbara) parents-of (wilhelm friedmann)))
251 >(((j s) (maria barbara) parents-of (c p e)))

252 >((X father-of Y) (X _ parents-of Y))

253 > ((X mother-of Y) (_ X parents-of Y))

254 >((X parent-of Y) (X father-of Y))

255 >((X parent-of Y) (X mother-of Y))

256 > ((X ancestor-of Y) (X parent-of Y))

257 >((X ancestor-of Z) (X parent-of Y) (Y ancestor-of Z))))
258 EOF

259

17.8. LISTINGS 347

260 # had to truncate this test - takes too long to run
261 eval_ok (<<EOF, <<EOR, ’genealogy’);

262 $prereqs

263 $rules

264 (prove ’((X ancestor-of (w f ernst))))

265 EOF

266 $prereqs_output

267 the-rules

268 (((j c friedrich) ancestor-of (w f ernst)))
269 EOR

270

271 $rules = <<EOF;

272 (define the-rules

273 (list

274 > ((proper-noun (john . S) S))

275 > ((proper-noun (paul . S) S))

276 >((noun (car . S) 9))

277 >((noun (garage . S) S))

278 >((auxilliary (will . S) S))

279 ’((auxilliary (has . S) S))

280 >((verb (put . S) S))

281 >((article (the . S) S))

282 ’((article (a . S) 8))

283 >((article (his . S) S))

284 >((preposition (in . S) S))

285 >((preposition (to . S) S))

286 > ((preposition (with . S) S))

287 > ((degree (very . S) S))

288 >((degree (quite . S) S))

289 >((adjective (red . S) S))

290 ’((adjective (green . S) S))

291 >((adjective (old . S) S))

292 ’((adjective (new . S) S))

203 > ((sentance S X)

204 (noun-phrase S S1) (verb-phrase S1 X))
295 ’((sentance S X)

296 (noun-phrase S S1) (auxilliary S1 S2) (verb-phrase S2 X))
297 > ((noun-phrase S X)

298 (article S S1) (adj-phrase S1 X))

299 > ((noun-phrase S X) (proper-noun S X))

300 >((adj-phrase S X) (noun S X))

301 > ((adj-phrase S X)

302 (degree-phrase S S1) (adj-phrase S1 X))
303 > ((degree-phrase S X) (adjective S X))

304 > ((deg-phrase S X)

305 (degree S S1) (deg-phrase S1 X))

306 > ((verb-phrase S X)

307 (verb S S1) (noun-phrase S1 S2) (prep-phrase S2 X))
308 > ((prep-phrase S X)

309 (preposition S S1) (noun-phrase S1 X))
310

311))

348 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

312 EOF

313

314 eval_ok(<<EQOF, <<EQOT, ’parsing’);

315 $prereqgs

316 $rules

317 (prove ’((sentance (john will put his car in the garage) ())))
318 EOF

319 $prereqgs_output

320 the-rules

321 ((sentance (john will put his car in the garage) ()))
322 EQOT

323

324 $rules = <<EOF;

325 (define the-rules

326 (list

327 >((simplify E E) (require (not (pair? ’E))))
328 > ((simplify (X OP Y) E)

329 (simplify X X1)

330 (simplify Y Y1)

331 (s (X1 0P Y1) E))

332 (s X+ 0) X))

333 "((s (0 +X) X))

334 (s X +Y) 2)

335 (require (and (number? ’X) (number? ’Y)))
336 (Z is (+ X 1))

337 (s X+ 1Y) (X +Y)))

338 (s X * 0) 0))

339 "((s (0 * X) 0))

340 (s (X * 1) X))

341 (s (1 * X) X))

342 (s X *Y) Z)

343 (require (and (number? ’X) (number? ’Y)))
344 (Z is (x X Y)))

345 (s X *Y) (X *Y)))

346 (s X 7 0) 1))

347 (s X 7 1) X))

348 (e X 7Y X 7Y

349 EOF

350

351 eval ok(<<EQOF, <<EOT, ’simplification’);

352 $prereqgs

353 $rules

354 (prove ’((simplify (((2 * (x ~ 1)) + 1) + 0) X)))
355 EOF

356 $prereqgs_output

357 the-rules

358 ((simplify (((2 * (x ~ 1)) + 1) + 0) ((2 * x) + 1)))
359 EOT

360

361 $rules = <<EOR;

362 (define the-rules

363 (list

17.8. LISTINGS 349

364 ’((factorial 0 1))

365 >((factorial N X) (T is (- N 1)) (factorial T U) (X is (x N U)))))
366 EOR

367

368 eval_ok (<<EQF, <<EOT, ’recursion’);
369 $prereqgs

370 $rules

371 (prove ’((factorial 10 X)))

372 EOF

373 $prereqs_output

374 the-rules

375 ((factorial 10 3628800))

376 EOT

377

378 eval_ok(<<EQOF, <<EOT, ’factorial not bidirectiomnal’);
379 $prereqgs

380 $rules

381 (prove ’((factorial X 3628800)))
382 EOF

383 $prereqs_output

384 the-rules

385 Error: no more solutions

386 EOT

387

388 # vim: ft=perl

Full source code for this version of the interpreter is available at
http://billhails.net/Book/releases/PScm-0.1.13.tgz

350 CHAPTER 17. UNIFICATION AND LOGIC PROGRAMMING

Chapter 18

Summary

In this book we’ve watched the evolution of a programming language from humble beginnings to a
powerful if somewhat incomplete implementation.

Starting from a global environment model in Chapter 3 on page 15 with basic arithmetic and con-
ditional evaluation, in Chapter 4 on page 49 we introduced an environment passing model which made
possible the implementation of local variables and much else besides. We also reasoned that trees are
a much better structure for combining environment frames than stacks are, especially in Chapter 5 on
page 59 where we introduced function definition and closure.

We then went on to introduce recursive functions in Chapter 6 on page 73, and showed that a different
kind of binding is necessary to get recursive functions to work. Moving on, in Chapter 7 on page 81, we
introduced another type of binding which is performed sequentially. In the next chapter we looked at
adding list processing to the language, allowing it to manipulate directly the structures that the language
is composed of. Then in posession of that new set of functions, in Chapter 9 on page 107 we added a
macro facility that allowed the program to generate parts of its own structure.

Before adding other desirable features to the language we paused to describe the benefits of a language
without such features, and noted that such a pure functional language was amenable to parallel evalua-
tion. Brushing aside those concerns we moved on to add side effects, (both definition and assignment,)
sequences and global definition.

Chapter 12 on page 135 described a simple object-oriented extension to the language, using our
existing environment implementation to model objects.

In Chapter 13 on page 159 we re-wrote the entire interpreter in Continuation Passing Style, giving
the language direct access to those continuations via call/cc (call-with-current-continuation) and
showed how powerful a control tool continuations are.

In the short but sweet Chapter 14 on page 231 we showed how trivial a threaded interpreter is once
continuations are available, and in the equally short Chapter 15 on page 237 we added built-in error
handling and error recovery.

Chapter 16 on page 249 took continuations even further, making a radical departure! from a standard
Scheme implementation to add the amb operator and backtracking. By showing that it is possible for
an interpreter to pass both a normal (success) continuation and a failure continuation, backtracking was
easily included into the PScheme core.

Chapter 17 on page 299 discussed pattern matching and unification, added unification and other
support routines as extensions to the interpreter. Then it used amb alongside those extentions to imple-
ment a simple but complete logic programming application in the PScheme language, demonstrating the

"Why are departures always radical?

351

352 CHAPTER 18. SUMMARY

essence of logic programming languages.
That’s all for now.

Bibliography

Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpretation of Computer
Programs, 2nd Edition. The MIT Press, Cambridge, Massachusetts, 1996.

Philip Carter and Ken Russel. Logic Brainteasers. Carlton, London, 2006.

W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, Berlin, Heidelberg, New
York, London, Paris, Tokyo, 1987.

Mark Jason Dominus. Higher Order Perl. Morgan Kaufmann Publishers, Amsterdam, 2005.
Martin Fowler. UML Distilled. Addison Wesley, Boston, 1999.

Daniel P. Friedman and Matthias Felleisen. The Little Schemer. The MIT Press, Cambridge,
Massachusetts, 1996.

Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of Programming Lan-
guages, 2nd Edition. The MIT Press, Cambridge, Massachusetts, 2001.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison Wesley,
Boston, 1995.

Adele Goldberg and David Robson. Smalltalk-80 the Language. Addison Wesley, Boston, 1989.

John C. Mitchell. Concepts in Programming Languages. Cambridge University Press, Cambridge,
England, 2003.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, Cambridge, Massachusetts,
2002.

Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten, Richard Kelsey, William
Clinger, Jonathan Rees, Robert Bruce Findler, and Jacob Matthews. Revised® report on the algo-
rithmic language scheme. http://www.r6brs.org/.

Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl, 3rd FEdition. O’Reilly, Se-
bastopol, 2000.

353

Index

*, 8

<, 279

<=, 279

>, 279

>=, 279

_apply (), 27, 28, 32, 54, 55, 66, 67, 88, 96, 99,
108, 147, 195, 197, 198, 208, 214, 281, 282,
323-326

_call method (), 150

_check_type(), 28, 89

_compare (), 282

_eval_values(), 77, 202, 203

_lookup_method (), 145, 146, 150, 151

_lookup_method_here(), 145, 146

_lookup_method_in_super (), 145, 146

_lookup_ref (), 75, 278

_map_bindings(), 203

_next_token(), 18-21, 103, 318, 319

_populate_bindings (), 100, 101

_populate methods_hash(), 141

_read(), 190, 191, 277

_symbol (), 68, 109

A(Q), 159, 174, 176, 179, 180, 183
AhQ), 176

accumulator, 162

alternative, 9

amb, 249

Amb: : Apply (), 272

and, 279

anonymous variable, 313
Apply O, 109, 220, 317
apply-next (), 211, 279, 280
ApplyMethod (), 145, 147, 150, 151, 214
arity, 339
arrays (), 308, 309, 320
as_string(), 30

as_string(), 16, 29-32, 68, 92, 94, 190, 239
Assign(), 75, 78, 125, 241, 273, 275

B, 176

B(), 159, 173-176, 179, 180, 183
backtracking, 266

backtracks, 249

Backus-Naur Format, 7

begin, 126

bindings, 12

body, 300

Bounce (), 188-190, 218, 231, 267, 271
Bouncer, 218, 219

cQO, 173-175, 179, 180, 183

cAQ), 183
call-with-current-continuation, 198
call/cc, 198

call method(), 142, 145, 149-151, 214, 215
CallMethodOrDie (), 215, 244

car, 88

cB(), 183

cdr, 88

chain of continuations, 220

check keys_eq(), 310

check_type(), 240
Class::Apply (), 145, 213, 243

Class: :make_instance(), 145
closure, 13, 59, 61
Closure::_apply (), 108, 198, 214
:as_string(), 109
:Function: :Apply (), 99, 108, 197
:Function: :new(), 64
:Macro: : _symbol(), 109
:Macro: : Apply (), 208
Closure: :Method: : ApplyMethod (), 214
Cons (), 92, 94, 96, 102, 114, 194, 209, 210

Closure:
Closure:
Closure:
Closure:
Closure:

354

INDEX

cons, 89

cons cells, 89
consequent, 9
constraint network, 340

Cont (), 187, 188, 190, 219, 220, 232, 267, 270

continuation, 166
continuation passing style, 160
Continuation::Cont(), 192

D(Q), 174, 175

Define(), 131, 132, 150, 273

define, 10

definition, 124

dependancy-directed backtracking, 285, 340
display_string(), 239
do_error(), 239, 240

dot notation, 89

Env:: _populate bindings(), 242
Env::Apply(), 214
Env::Assign(Q), 211, 241
Env::callmethod(), 214
Env::CallMethodOrDie (), 215, 244
Env::Define(), 212
Env::Extend(), 53, 67, 196-198
Env::ExtendIteratively(), 204
Env: :ExtendRecursively (), 202, 204
Env: :ExtendUnevaluated (), 202
Env: :LookUp(), 50

Env: :LookUpHere (), 273
Env::new(), 51
Env::ResolveAll(), 321

Env: :Super: :Apply (), 215
Environment, 15

EqQ), 283, 320

eq?, 253, 279

Error (), 239-241, 245, 266, 275, 277
error, 237

escape procedures, 220
Eval(), 54, 190, 219, 268, 275
Eval, 15

eval, 117

eval_ok(), 33

Evaluator, 15

exit, 232
Expr::List::Cons(), 101, 214
Expr::List::Eval(), 26, 192, 218

355

Expr::List::first(), 88
Expr::List::Pair::Eq(), 283
Expr::List::Pair::Instantiate(), 325
Expr::List::Pair: :map_eval(), 206, 268
Expr::List::Pair::UnifyType(), 321
Expr::List::value(), 94

Expr: :map_eval(), 206

Expr: :Quote(), 209
Expr::quote_rest(), 210
Expr::String::as_string(), 239

Expr: :Symbol: :Eval(), 191, 241
expression, 7, 124

Extend (), 51-53, 56, 77, 99-101, 268
Extend* (), 97, 99
ExtendIteratively(), 83, 101, 204, 205
ExtendRecursively(), 77, 101
ExtendUnevaluated(), 67, 99, 100, 145, 242

factorial(), 161, 162, 166-168, 170-172, 177, 178,
186, 192, 194

factorial helper(), 162, 172

Fail(), 267, 271

fail(), 310

File::Find, 224

first (), 26, 89, 94, 95, 99, 209, 283, 321, 325

first class objects, 185

function, 59, 61

functor, 338, 339

get_method (), 146, 147, 151
global variables, 10

hash(), 308
hashes (), 308, 310
head, 300

hygenic macros, 112

if, 9
implicitly typed language, 316
init, 136
Instantiate(), 325
instantiate, 324
I10::String, 33
is_anon(), 319, 320
is_close_token(), 20, 21
is_dot_token(), 103
is_expr(), 116
is_number (), 326

356

is_open_token(), 20, 21
is_pair(), 95, 326
is_quote_token(), 115, 116
is_retry(), 277, 278
is_unquote(), 114
is_unquote_token(), 115, 116
isvar(Q), 319, 326

isTrue(), 29, 94, 196, 197
iterator, 224

Keys (), 322

lambda, 11

lambda calculus, 12

let, 12

let*, 82

LetRec, 76

letrec, 74

Like::This, 5

Lisp, 4

list, 7

list, 88
ListEvalRestCont, 219
ListFirstEvalCont, 219
LookUp (), 17, 26, 49, 51, 75, 76, 191, 241
lookup_method (), 140
LookUpHere (), 278
LookUpNoError (), 275, 278

macro, 108

make-class, 135

make_instance (), 142-144, 150, 214, 242, 243

map_eval (), 95, 96, 99, 100, 147, 194, 195, 197, 198,
200, 203, 206, 211, 214, 318

match(), 308-310, 313-315

match_arrays(), 309, 310

match_hashes (), 310

match strings(), 310

match_var(), 309, 314

Math::BiglInt, 23, 24, 28

new(), 23

new(), 16, 18, 21, 23, 24, 51, 52, 92, 94, 95, 141,
144, 147, 150, 188, 216, 218, 219, 325

new-env, 324

new_thread (), 231, 232, 234, 277, 283

Null Object Pattern, 95

number, 7

INDEX

number?, 326

operator precedence, 9, 339
operators, 339
or, 279

pair?, 326

pairs, 89

Parameter Object, 285

pattern, 306

pattern matching, 299

pattern variables, 300, 306

polymorphism, 15

pop(), 50

Primitive Operations, 15

Primitive: :Apply(), 96, 193, 240

Print (), 16, 29, 32, 190, 215, 276, 277

Print, 15

print, 215

Print System, 15

Prolog, 160

PScheme, 7

PScm, 15, 21, 27, 31, 32, 68, 188, 189, 231, 239
PScm::Class, 140-146, 150, 151, 242
PScm::Class::Root, 144, 150, 243
PScm::Closure, 64, 66, 68, 69, 108, 146, 147
PScm::Closure::Function, 64, 68, 108, 109, 147,
193, 197

Closure::Macro, 108, 109, 208
Closure::Method, 146, 150, 151
Continuation, 188, 200, 221, 266, 267,
270

Continuation::Bounce, 267, 270, 271
PScm::Continuation::Cont, 267, 270
PScm::Continuation::Fail, 267, 270
PScm::Env, 16, 26, 51, 56, 75, 77, 83, 99, 100, 131,
140, 142, 143, 145, 146, 149-151, 214, 241,
273, 275, 278, 317, 322, 340

Env::Super, 143, 144, 146, 148, 150, 151,
214

PScm::Expr, 22, 23, 25, 30, 32

PScm::Expr, 19-22, 24, 25, 27-31, 54, 94, 95, 113,
114, 116, 191, 193, 196, 206, 239, 268, 277,
278, 282, 283, 318-320, 322, 323, 325, 326
Expr::Atom, 22-24, 30-32, 283
Expr::FileHandle, 215

PScm::
PScm::
PScm::

PScm::

PScm::

PScm::
PScm::

INDEX

PScm::

PScm::

PScm::

PScm::
PScm::
PScm::
PScm::
PScm::

PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::
PScm::

PScm::
PScm:
PScm::
PScm::
PScm::
PScm::
PScm::

Expr::List, 20, 22, 24, 26, 27, 30-32, 54,
68, 88, 91-94, 96, 99, 114, 116, 206, 211,
214, 323

Expr::List::Null, 92, 94, 95, 114, 194,
206, 283

Expr::List::Pair, 92-94, 113, 206, 209,
320, 323, 326

Expr::Literal, 23

Expr::Null, 206

Expr::Number, 19, 23-25, 27, 28, 31
Expr::String, 19, 23, 25, 31, 32, 239
Expr::Symbol, 19, 23, 25, 31, 54, 114,

PScm::
PScm::
PScm::
PScm::

SpecialForm::
SpecialForm::
SpecialForm:
SpecialForm::

LetStar, 82, 98

Macro, 108

:MakeClass, 140, 150

Or, 281

Print, 215, 216
Quote, 87, 99, 208
Sequence, 279

PScm::SpecialForm::
PScm::SpecialForm::
PScm::SpecialForm::

PScm::
PScm::
PScm::
PScm::
PScm::

SpecialForm::
SpecialForm::
SpecialForm::

Test, 33
Token, 19-21,

Set, 125
Spawn, 232
Unify, 317

103, 115, 116

191, 277, 278, 318, 319
Expr::Var, 318-320, 323, 325, 340

Primitive,
Primitive:
Primitive::
Primitive::
Primitive::
Primitive::
Primitive::
Primitive:
Primitive::
Primitive::
Primitive::
Primitive::
Primitive::
Primitive:
Primitive::
Primitive::
Primitive::

27, 28, 32, 54, 88, 96, 193, 281

:Car, 88

Cdr, 89
Compare, 281
Cons, 96

Eq, 282

Ge, 282

:Gt, 282

Le, 282

List, 88

Lt, 282

Multiply, 26, 27, 195
Substitute, 321

:Subtract, 26, 28

TypeCheck, 326
TypeCheck::Number, 326
TypeCheck::Pair, 326

Primitive:: TypeCheck::Var, 326
Read, 16, 18, 31, 190, 318

SpecialForm, 32, 63, 76, 87, 108, 125, 126,
131

SpecialForm::And, 280
:SpecialForm::Begin, 126, 279
SpecialForm::Define, 131
SpecialForm::Error, 238, 239
SpecialForm::Eval, 117
SpecialForm::If, 26, 29, 98, 193
SpecialForm::Lambda, 63, 64, 108, 193

PSCm: :SpecialForm: :Lambda: : Apply (), 208

PScm:

PScm:

:SpecialForm::Let, 52, 76, 77, 82, 97, 193,

195

:SpecialForm::LetRec, 77, 98

PScm::
PScm::
PScm::

Token::Close, 19, 21
Token::Dot, 103
Token::Open, 19, 21
PScm::Token::Quote, 115, 116
PScm::Token::Unquote, 115, 116
pythagorean triples, 258

Quote (), 113, 114, 209, 210
quote, 87
quote_rest (), 114, 209, 210

357

Read (), 18-20, 22, 31, 101, 190, 191, 251, 266, 276—

278, 318
read eval print loop, 15
Read:: next_token(), 114
Read::Read(), 116, 187
read list(), 102
read list_element (), 102
Reader, 15

ReadEvalPrint (), 16, 25, 29, 33, 53, 63, 78, 104,

118, 127, 132, 149, 190, 215, 275, 283

repl, 15

repl(), 275

repl(), 189, 190, 238, 275-277, 283
Replace(), 325
Resolve (), 322, 323

resolve(), 315-317, 322
ResolveAll (), 321-323
ResolveTerm(), 322, 323

rest (), 26, 88, 89, 94, 95, 99, 209, 283, 321, 325

root, 136
rule, 300

Scheme, 4
sequence, 126

358

sequences, 124

side effects, 123, 124
significant expressions, 190
simple expression, 190

spawn, 231

special form, 10

SpecialForm:
SpecialForm:
SpecialForm:
SpecialForm:
SpecialForm:
SpecialForm:
SpecialForm:
SpecialForm:
SpecialForm:
SpecialForm:
SpecialForm:
SpecialForm:
SpecialForm:
SpecialForm:
statement, 124
string, 7

strings(), 92,

Structure, 15
structure, 306

Substitute(),

:Amb: :Apply (), 271

:Begin: :Apply (), 279
:Define: :Apply (), 212, 273, 275
:If: :Apply O, 29, 55, 196, 197
:Lambda: : Apply O, 99, 197
:Let: :Apply (), 55, 76, 97, 268
:Let: :UnPack(), 76
:LetStar: : Apply (), 204
:Macro: : Apply (), 208
:MakeClass: : Apply (), 213
:Primitive: :Apply (), 195
:Print: :Apply (), 217

:Quote: :Apply (), 113, 206, 208
:Set: :Apply (), 241, 274

94, 95, 308, 310

321, 323, 325

substitute, 317

super, 137
symbol, 7

tail call, 162

Tail Call Elimination, 163
tail call optimization, 160
tail position, 162

tail recursion, 160

tail recursive, 162

tail-call optimization, 162
Term::ReadLine::Gnu, 33

test, 9
test (), 326
the cut, 339
this(), 5
this, 137
times(), 168

top(), 117, 118

trampoline, 177

trampoline(),

188, 189, 231, 234

unification, 285, 299
Unify (), 317-321, 325
unify (), 313-318, 320

unify, 316

unify arrays(), 314, 315, 321
unify_hashes(), 314

unify strings(), 314, 315
unify_var(), 314, 315, 318, 319
UnifyType (), 320
UnPack(), 76, 77, 97, 98
unpack _bindings (), 97
unquote, 112
UnSet (), 273, 278

value (), 23

INDEX

value(), 17, 23, 24, 26, 27, 29, 30, 94-97, 99, 114,

277, 278
var (), 308, 309, 314
var?, 326
variable assignment, 124

X0, 180, 183
YO, 180

Z(0), 180, 183

